Morishige, A.E.A.E.MorishigeHeinz, Friedemann D.Friedemann D.HeinzLaine, H.S.H.S.LaineSchön, JonasJonasSchönKwapil, WolframWolframKwapilLai, B.B.LaiSavin, HeleHeleSavinSchubert, Martin C.Martin C.SchubertBuonassisi, ToniToniBuonassisi2022-03-052022-03-052018https://publica.fraunhofer.de/handle/publica/25592110.1109/JPHOTOV.2018.2869544N-type multicrystalline silicon (mc-Si) is a promising alternative to the dominant p-type mc-Si for solar cells because it combines the cost advantages of mc-Si while benefiting from higher tolerance to transition metal contamination. A detailed understanding of the relative roles of point defect and precipitated transition metals has enabled advanced processing and high minority carrier lifetimes in p-type mc-Si. This contribution extends that fundamental understanding to Fe contamination in n-type mc-Si, helping enable processing of this material into an economical and high-performance photovoltaic device. By directly correlating micro-photoluminescence-based minority carrier lifetime mapping and synchrotron-based micro-X-ray fluorescence mapping of Fe-rich precipitates, we develop a quantitative, physical understanding of the recombination activity of Fe-rich precipitates in n-type mc-Si.enPhotovoltaikSilicium-PhotovoltaikCharakterisierung von Prozess- und Silicium-Materialien621697Moving Beyond p-Type mc-Si: Quantified Measurements of Iron Content and Lifetime of Iron-Rich Precipitates in n-Type Siliconjournal article