Under CopyrightHormann, C.C.HormannMeier, S.S.MeierMoseler, M.M.Moseler2022-03-0425.3.20112009https://publica.fraunhofer.de/handle/publica/21872910.1140/epjb/e2009-00131-6The topography evolution of hydrogenated diamond-like carbon coatings deposited through toluene based capacitively coupled plasma enhanced chemical vapor deposition has been studied experimentally and with continuum growth models. The experimentally observed mound formation and surprisingly large growth exponents (beta a parts per thousand 0.9 +/- 0.1) cannot be reproduced by familiar local stochastic differential equations that are successfully used for other thin film deposition techniques. Here we introduce a novel numerical approach to simulate a continuum growth model that takes into account non-local shadowing effects. We show that the major characteristics of the experimentally observed topography evolution can be accurately represented by this model.enkuramoto-sivashinsky equationsurface diffusioninterface growthglow discharge2+1 dimensioninstabilitycarbonmodelionsimulation620536The importance of non-local shadowing for the topography evolution of a-C:H films grown by toluene based plasma enhanced chemical vapor depositionjournal article