Chojecki, PaulPaulChojeckiPrzewozny, DavidDavidPrzewoznyLafci, Mustafa TevfikMustafa TevfikLafciKovalenko, MykytaMykytaKovalenkoPackmohr, PiaPiaPackmohrVan Thanh, HoaHoaVan ThanhDreßler-Pasenau, LauraLauraDreßler-PasenauSüß, WolfgangWolfgangSüßHäber, StefanStefanHäberBosse, SebastianSebastianBosse2025-06-132025-06-132025https://publica.fraunhofer.de/handle/publica/48863410.1109/VRW66409.2025.004802-s2.0-105005138806Unexploded ordnance (UXO) detection remains a critical challenge in past and present conflict zones. Magnetometer surveys are a key method for identifying UXO, but require precise, systematic scanning and expert interpretation. The ARES project leverages Augmented Reality (AR) and Artificial Intelligence (AI) to enhance UXO exploration by improving quality, efficiency, and safety. Using AR glasses, the system guides users through survey areas, assisting with lane alignment, walking speed, and maintaining magnetometer stability. AI-driven processing transforms sparse magnetometer data into dense magnetic maps, while suspected UXO points are directly visualized in the AR display. These features streamline on-site navigation and analysis, offering an intuitive decision-support system for field experts while maintaining reliance on human expertise.enfalseApplied computing~CartographyArtificial IntelligenceEODExplosive ordnance disposalHuman-centered computing~Mixedaugmented realityARES: Augmented Reality and AI Assistance Technologies for Safety and Efficiency Optimization in Explosive Ordnance Explorationconference paper