López-Vidrier, JulianJulianLópez-VidrierBerencén, Y.Y.BerencénHernández, S.S.HernándezBlázquez, O.O.BlázquezGutsch, SebastianSebastianGutschLaube, J.J.LaubeHiller, D.D.HillerLöper, PhilippPhilippLöperSchnabel, ManuelManuelSchnabelJanz, StefanStefanJanzZacharias, MargitMargitZachariasGarrido, B.B.Garrido2022-03-042022-03-042013https://publica.fraunhofer.de/handle/publica/23394010.1063/1.4826898Charge transport and electroluminescence mechanisms in Si-rich Si oxynitride/silicon oxide (SRON/SiO2) superlattices deposited on p-type Si substrate are reported. The superlattice structures were deposited by plasma-enhanced chemical-vapor deposition and subsequently annealed at 1150 °C to precipitate and crystallize the Si excess into Si nanocrystals. The dependence of the electrical conduction on the applied voltage and temperature was found to be well described by a Poole-Frenkel transport mechanism over a wide voltage range. On the other hand, the observed dependence of the electroluminescence on the SRON layer thickness is a clear proof of quantum confinement and was attributed to an excitonic radiative recombination taking place in the confined states within the Si quantum dots. A model is proposed based on thermal hopping of electrons between the quantum dots acting as trap states (Poole-Frenkel). A correlation between carrier transport and electroluminescence has been established considering impact ionization of high-kinetic energy electrons on the Si quantum dots.enSolarzellen - Entwicklung und CharakterisierungSilicium-PhotovoltaikFarbstoffOrganische und Neuartige SolarzellenHerstellung und Analyse von hocheffizienten SolarzellenTandemsolarzellen auf kristallinem Silicium530Charge transport and electroluminescence of silicon nanocrystals/SiO2 superlatticesjournal article