Kopf, M.M.KopfGruna, RobinRobinGrunaLängle, ThomasThomasLängleBeyerer, JürgenJürgenBeyerer2022-03-0526.03.20192018https://publica.fraunhofer.de/handle/publica/25215910.1515/teme-2017-0069Nahinfrarotspektroskopie ist eine etablierte Methode zur Qualitätsbestimmung von Obst und Gemüse. Neue Anwendungsgebiete, wie z. B. die mobile Lebensmittelanalyse mittels handgetragener und preisgünstiger Mikrospektrometer, verlangen nach neuen Ansätzen zur Multiprodukt-Kalibrierung. Zur produktspezifischen Kalibrierung existieren bereits geeignete Methoden wie partial least squares regression (PLSR). Der Versuch von Micklander et al. zeigt jedoch auf, dass die Multiprodukt-Kalibrierung noch eine ungelöste Herausforderung darstellt. Nichtlineare Ansätze wie neuronale Netze und lokale Regression erzielten hier bessere Ergebnisse als konventionelle Methoden wie PLSR. Vorläufige Untersuchungen zur Multiprodukt-Kalibrierung zur quantitativen Analyse von Lebensmitteln mittels NIR Spektroskopie lieferten vielversprechende Ergebnisse durch Memory-Based Learning (MBL) und Classification-Prediction-Hierarchy (CPH). In dieser Arbeit werden drei Ansätze zur Multiprodukt-Kalibrierung untersucht. Hierzu werden drei unterschiedliche Apfelsorten, Birnen und Tomaten mit bekanntem Zuckergehalt (in ○Brix) mittels bildgebender NIR Spektroskopie im Bereich von 900 nm bis 2400 nm analysiert. Die Genauigkeit eines linearen PLSR-Modells und zweier nichtlinearer Modelle (CPH und MBL) sowie unterschiedliche Vorverarbeitungsmethoden werden untersucht und evaluiert. Zur Bestimmung von Fehlermaßen dienen Leave-One-Out- und Leave-One-Product-Out-Kreuzvalidierungen.Near-infrared (NIR) spectroscopy is a widespread technology for fruit and vegetable quality assessment. New fields of application of this technology, like mobile food analysis with handheld low-cost spectrometers, increase the demand for chemometric calibration models that are able to deal with multiple products and varieties thereof at once (so-called multi-product calibration models). While there are well studied methods for single-product calibration as partial least squares regression (PLSR), multi-product calibration is still challenging. Conventional approaches that work well for single-product calibration can lead to high errors for multi-product calibration. However, nonlinear methods as local regression and artificial neural networks were found to be suitable1 2. Preliminary studies in multi-product calibration for quantitative analysis of food with near-infrared spectroscopy showed good results for memory-based learning (MBL) and a classification prediction hierarchy (CPH)3. In this study, three varieties of apples, pears and tomatoes with known sugar content (in ○Brix) are analysed with NIR hyperspectral imaging spectroscopy in the range from 900 nm to 2400 nm. Predictive performance of a linear PLSR model, two nonlinear models (CPH and MBL) and different pre-processing techniques are tested and evaluated. For error estimation, leave-one-product-out and leave-one-out cross-validation are used.enNIRchemometricsfoodstuffmulti-product calibrationMultiprodukt-KalibrierungLebensmittelanalyseChemometrie681Evaluierung und Vergleich von NIR-Multiprodukt-Kalibrierungsverfahren zur Brix-BestimmungEvaluation and comparison of NIR multi-product calibration methods for Brix predictionjournal article