Jotschke, MarcelMarcelJotschke2024-04-222024-04-222024-04urn:nbn:de:bsz:14-qucosa2-904224https://publica.fraunhofer.de/handle/publica/466236The digital transformation of production and living is one research field with potential to overcome arising ecological and social problems. Digital technologies associated with the internet of things (IoT) enable new intelligent, sustainable and efficient production techniques. Massive monitoring and optimal controlling of industrial processes (smart fabrication) and human living (smart cities) ultimately results in the reduction of resource demands. Key parts of these new applications are microelectronic sensor read-out systems connected in IoT sensor networks, which measure and transmit multi-physical environmental parameters. In practical applications, large quantities (tens to hundreds) of sensor nodes are used. Circuitry with minimized power consumption is necessary to ensure long operation time and low maintenance cost. The motivation of this work is the development of a low-power, low-cost, microelectronic sensor read-out circuit, which combines flexibility of employed IoT sensor hardware with flexibility in complementary metal oxide semiconductor (CMOS) technology. This work covers design and implementation of an integrated multi-sensor analog frontend (AFE) with a near-zero power consumption below 10 μW, which offers above-state of the art, real-time configurability of key parameters and flexibility in application and technology. It aims for IoT environmental sensing applications, where energy-efficient, medium-speed and medium-resolution data acquisition of different environmental sensor signals is required. Its innovative architecture supports a wide variety of voltage ranges, frequency levels and sensor types, while maintaining energy-efficiency in different operation modes. Samples of the developed AFE are employed in autonomous sensor nodes for smart cities and smart factories, where they collect and process environmental parameters such as weather (light, temperature) and gases. The durable sensor nodes are operated by energy harvester sources and transmit data wirelessly, demonstrating one practical realization of an autonomous zero-power IoT network. Moreover, the technological flexibility of the AFE is investigated by migrating one key building block, which is the analog-to-digital converter, to different CMOS technologies. Conclusions for the optimal CMOS node for the entire AFE are drawn by performance comparison.Die digitale Transformation von Industrie und Gesellschaft hat das Potential, zur Bewältigung bevorstehender ökologischer und sozialer Krisen beizutragen. Moderne digitale Technologien, wie das Internet der Dinge (engl. internet of things, IoT), ermöglichen intelligente Produktionsketten von nie dagewesener Effizienz und Nachhaltigkeit. Mit feingranularer Kontrolle und optimierter Steuerung soll schlussendlich der Ressourcenverbrauch von geregelten Prozessen, zum Beispiel in der smarten Fabrik und in der smarten Stadt, verringert werden. Schlüsseltechnologien dieser neuen Anwendungsfälle sind mikroelektronische Sensor-Auslese-Schaltungen, die multi-physikalische Umweltparameter messen und drahtlos in IoT-Netzwerke übertragen. In praktisch relevanten Szenarien bestehen solche Netzwerke aus dutzenden bis tausenden Sensorknoten. Unter unternehmerischen Gesichtspunkten sind lange Betriebszeiten ohne Batteriewechsel und geringe Wartungskosten notwendig, welche u. a. durch Elektronik mit minimalem Energieverbrauch erreicht werden können. Die Motivation dieser Arbeit ist die Entwicklung einer energiesparenden und kostengünstigen mikroelektronischen Sensor-Auslese-Schaltung, die Flexibilität in der Auswahl der eingesetzten IoTSensoren mit Flexibilität in der Auswahl der Halbleiter-Technologie (engl. complementary metal oxide semiconductor, CMOS) verbindet. Diese Arbeit behandelt Entwurf und Implementierung eines integrierten Multi-Sensor-Analog-Frontends (AFE) mit extrem geringer Leistungsaufnahme von weniger als 10 μW (engl. near zero power), dessen Echtzeit-Konfigurierbarkeit von relevanten Parametern und dessen Flexibilität in Anwendung und Technologie ein Niveau erreicht, das sich über dem Stand der Technik befindet. Es soll in IoT-Anwendungen eingesetzt werden, in denen die energieeffiziente Verarbeitung von verschiedenen Umwelt-Sensor-Signalen mit mittlerer Geschwindigkeit und mittlerer Genauigkeit gefordert ist. Mit seiner innovativen Architektur unterstützt es einen großen Bereich von Eingangsspannungen, Eingangs-Frequenzen und Sensor-Typen in unterschiedlichen Operations-Modi, wobei seine Energieeffizienz nicht beeinträchtigt wird. Exemplare des entworfenen AFEs werden durch den Einsatz in autonomen Sensorknoten für die smarte Stadt und die smarte Fabrik, wo sie Umweltparameter wie Wetter (Licht, Temperatur) und Gaskonzentrationen sammeln und verarbeiten, in die Anwendung überführt. Die langlebigen Sensorknoten, die ihre Energie von alternativen Quellen beziehen und via drahtloser Funkverbindung kommunizieren, demonstrieren eine praktische Realisierung eines autonomen Zero-Power-IoT Netzwerkes. Zusätzlich untersucht diese Arbeit die Technologie-Flexbilität des AFEs, indem ein Kernbaustein, der Analog-Digital-Wandler, in verschiedene CMOS-Technologien migriert wird. Anhand eines Vergleichs werden Schlüsse für den optimalen Technologieknoten des gesamten AFEs gezogen.enLow PowerFrontendADCAnalog-Digital-WandlerSensor-AusleseSensorelektronikDDC::000 Informatik, Informationswissenschaft, allgemeine WerkeA Universal Near-zero Power Analog Frontend for Internet of Things SensorsEin Universelles Near-Zero-Power-Analog-Frontend für Sensoren des Internets der Dingedoctoral thesis