Publications Search Results

Now showing 1 - 4 of 4
  • Publication
    Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers
    ( 2012)
    Remias, D.
    ;
    Schwaiger, S.
    ;
    Aigner, S.
    ;
    Leya, T.
    ;
    Stuppner, H.
    ;
    Lütz, C.
    Mesotaenium berggrenii is one of few autotrophs that thrive on bare glacier surfaces in alpine and polar regions. This extremophilic alga produces high amounts of a brownish vacuolar pigment, whose chemical constitution and ecological function is largely unknown until now. Field material was harvested to isolate and characterize this pigment. Its tannin nature was determined by photometric methods, and the structure determination was carried out by means of HPLC-MS and 1D- and 2D-NMR spectroscopy. The main constituent turned out to be purpurogallin carboxylic acid-6-O-beta-d-glucopyranoside. This is the first report of such a phenolic compound in this group of algae. Because of its broad absorption capacities of harmful UV and excessive VIS radiation, this secondary metabolite seems to play an important role for the survival of this alga at exposed sites. Attributes and abundances of the purpurogallins found in M. berggrenii strongly suggest that they are of principal ecophysiological relevance like analogous protective pigments of other extremophilic microorganisms. To prove that M. berggrenii is a true psychrophile, photosynthesis measurements at ambient conditions were carried out. Sequencing of the 18S rRNA gene of this alpine species and of its arctic relative, the filamentous Ancylonema nordenskioldii, underlined their distinct taxonomic position within the Zygnematophyceae.
  • Publication
    Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation
    ( 2010)
    Remias, D.
    ;
    Karsten, U.
    ;
    Lütz, C.
    ;
    Leya, T.
    Amongst a specialised group of psychrophilic microalgae that have adapted to thrive exclusively in summer snow fields, Chloromonas nivalis has been reported as a species causing green, orange or pink blooms in many alpine and polar regions worldwide. Nevertheless, the cytology, ecophysiology and taxonomy of this species are still unresolved. Intracellular processes during cyst formation, which is the dominant stage on snow fields, were examined with samples from the European Alps to better understand the cellular strategies of a green alga living in this harsh habitat. We show with two different methods, i.e. oxygen optode fluorometry and by chlorophyll fluorescence, that the cysts are photosynthetically highly active, although they do not divide, and that Chloromonas nivalis can cope with low as well as high light conditions. During cyst formation, the chloroplast is fragmented into several smaller parts, enlarging the surface to volume ratio. The pool of xanthophyll-cycle pigments is significantly enlarged, which is different from other snow algae. The cytoplasm is filled with lipid bodies containing astaxanthin, a secondary carotenoid that causes the typical orange colour. The cyst wall surface possesses characteristic elongate flanges, which are assembled extracellulary by accumulation of material in the periplasmatic interspace. Comparison of Chloromonas nivalis samples from different locations (Austrian Alps, Spitsbergen) by molecular methods indicates genetic variations due to spatial isolation, while a North American strain has no close relationship to the taxon.
  • Publication
    Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology
    ( 2009)
    Leya, T.
    ;
    Rahn, A.
    ;
    Lütz, C.
    ;
    Remias, D.
    Ten algal strains from snow and permafrost substrates were tested for their ability to produce secondary carotenoids and alpha-tocopherol in response to high light and decreased nitrogen levels. The Culture Collection of Cryophilic Algae at Fraunhofer IBMT in Potsdam served as the bioresource for this study. Eight of the strains belong to the Chlorophyceae and two strains are affiliated to the Trebouxiophyceae. While under low light, all 10 strains produced the normal spectrum of primary pigments known to be present in Chlorophyta, only the eight chlorophyceaen strains were able to synthesize secondary carotenoids under stress conditions, namely canthaxanthin, echinenone and astaxanthin; seven of them were also able to synthesize minor amounts of adonixanthin and an unidentified hydroxyechinenone. The two trebouxiophyceaen species of Raphidonema exhibited an unusually high pool of primary xanthophyll cycle pigments, possibly serving as a buffering reservoir against excessive irradiation. They also proved to be good alpha-tocopherol producers, which might also support the deactivation of reactive oxygen species. This study showed that some strains might be interesting novel candidates for biotechnological applications. Cold-adapted, snow and permafrost algae might serve as valuable production strains still exhibiting acceptable growth rates during the cold season in temperate regions.