Publications Search Results

Now showing 1 - 2 of 2
  • Publication
    Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set
    ( 2021)
    Matek, C.
    ;
    Krappe, S.
    ;
    Münzenmayer, C.
    ;
    Haferlach, T.
    ;
    Marr, C.
    Biomedical applications of deep learning algorithms rely on large expert annotated data sets. The classification of bone marrow (BM) cell cytomorphology, an important cornerstone of hematological diagnosis, is still done manually thousands of times every day because of a lack of data sets and trained models. We applied convolutional neural networks (CNNs) to a large data set of 171 374 microscopic cytological images taken from BM smears from 945 patients diagnosed with a variety of hematological diseases. The data set is the largest expert-annotated pool of BM cytology images available in the literature. It allows us to train high-quality classifiers of leukocyte cytomorphology that identify a wide range of diagnostically relevant cell species with high precision and recall. Our CNNs outcompete previous feature-based approaches and provide a proof-of-concept for the classification problem of single BM cells. This study is a step toward automated evaluation of BM cell morphology using state-of-the-art image-classification algorithms. The underlying data set represents an educational resource, as well as a reference for future artificial intelligence-based approaches to BM cytomorphology.
  • Publication
    Automated classification of bone marrow cells in microscopic images for diagnosis of leukemia
    ( 2015)
    Krappe, S.
    ;
    Benz, M.
    ;
    Wittenberg, T.
    ;
    Haferlach, T.
    ;
    Münzenmayer, C.
    The morphological analysis of bone marrow smears is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually with the use of bright field microscope. This is a time consuming, partly subjective and tedious process. Furthermore, repeated examinations of a slide yield intra- and inter-observer variances. For this reason an automation of morphological bone marrow analysis is pursued. This analysis comprises several steps: image acquisition and smear detection, cell localization and segmentation, feature extraction and cell classification. The automated classification of bone marrow cells is depending on the automated cell segmentation and the choice of adequate features extracted from different parts of the cell. In this work we focus on the evaluation of support vector machines (SVMs) and random forests (RFs) for the differentiation of bone marrow cells in 16 different classes, including immature and abnormal cell classes. Data sets of different segmentation quality are used to test the two approaches. Automated solutions for the morphological analysis for bone marrow smears could use such a classifier to pre-classify bone marrow cells and thereby shortening the examination duration.