• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Deep learning and rule-based image processing pipeline for automated metal cutting tool wear detection and measurement
 
  • Details
  • Full
Options
2022
Journal Article
Titel

Deep learning and rule-based image processing pipeline for automated metal cutting tool wear detection and measurement

Abstract
Tool wear causes costs and quality problems in metal cutting manufacturing processes. This paper contains an approach of digitalization and big data analytical methods to quantify the wear of metal cutting tools. The method developed consists of a pipeline of deep learning operations for processing tool wear images collected with a digital microscope and is complemented by a rule-based approach to measuring wear along the cutting edge of machining tools. The end-to-end approach allows fully automated tool wear detection and measurement that can be used for inline measurements within CNC machine tools for machining applications.
Author(s)
Holst, Carsten
Fraunhofer-Institut für Produktionstechnologie IPT
Yavuz, Taha Berk
Fraunhofer-Institut für Produktionstechnologie IPT
Gupta, Pranjul
Justus-Liebig-Universität
Ganser, Philipp
Fraunhofer-Institut für Produktionstechnologie IPT
Bergs, Thomas
Werkzeugmaschinenlabor WZL der RWTH Aachen
Zeitschrift
IFAC-PapersOnLine
Project(s)
CAMWear2.0
Funder
Bundesministerium für Wirtschaft und Technologie -BMWi-, Bonn
Konferenz
Workshop on Intelligent Manufacturing Systems 2022
Thumbnail Image
DOI
10.1016/j.ifacol.2022.04.249
Language
English
google-scholar
Fraunhofer-Institut für Produktionstechnologie IPT
Tags
  • Machine Learning

  • Computer Vision

  • Case study of digitalization or smart system

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022