• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Activation Anomaly Analysis
 
  • Details
  • Full
Options
2021
  • Konferenzbeitrag

Titel

Activation Anomaly Analysis

Abstract
Inspired by recent advances in coverage-guided analysis of neural networks, we propose a novel anomaly detection method. We show that the hidden activation values contain information useful to distinguish between normal and anomalous samples. Our approach combines three neural networks in a purely data-driven end-to-end model. Based on the activation values in the target network, the alarm network decides if the given sample is normal. Thanks to the anomaly network, our method even works in semi-supervised settings. Strong anomaly detection results are achieved on common data sets surpassing current baseline methods. Our semi-supervised anomaly detection method allows to inspect large amounts of data for anomalies across various applications.
Author(s)
Sperl, Philip
Fraunhofer-Institut fĂĽr Angewandte und Integrierte Sicherheit AISEC
Schulze, Jan-Philipp
Fraunhofer-Institut fĂĽr Angewandte und Integrierte Sicherheit AISEC
Böttinger, Konstantin
Fraunhofer-Institut fĂĽr Angewandte und Integrierte Sicherheit AISEC
Hauptwerk
Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2020. Proceedings. Pt.II
Project(s)
IUNO InSec
Funder
Bundesministerium fĂĽr Bildung und Forschung BMBF (Deutschland)
Konferenz
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2020
Thumbnail Image
DOI
10.1007/978-3-030-67661-2_5
Language
Englisch
google-scholar
AISEC
Tags
  • anomaly detection

  • deep learning

  • intrusion detection

  • semi-supervised learn...

  • coverage analysis

  • data mining

  • it security

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022