• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Model-Free Grasp Learning Framework based on Physical Simulation
 
  • Details
  • Full
Options
2020
  • Konferenzbeitrag

Titel

Model-Free Grasp Learning Framework based on Physical Simulation

Abstract
The work at hand presents a generic framework to build classifiers that allow to predict the quality of 6-DOF grasp candidates for arbitrary mechanical grippers based on the depth data captured by a depth sensor. Hereby, the framework covers the whole process of setting up a deep neural network for a given mechanical gripper by making use of synthetic data resulting from a new grasp simulation tool. Furthermore, a new extended convolutional neural network (CNN) architecture is introduced that estimates the quality of a suggested grasp candidate based on local depth information and the pose of the corresponding grasp. As a result, robust grasp candidates can be detected in a model-free fashion.
Author(s)
Riedlinger, Marc A.
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Völk, Markus
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Kleeberger, Kilian
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Khalid, Muhammad Usman
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Bormann, Richard
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Hauptwerk
ISR 2020, 52nd International Symposium on Robotics
Konferenz
International Symposium on Robotics (ISR) 2020
Thumbnail Image
Language
Englisch
google-scholar
IPA
Tags
  • Robotik

  • deep grasping

  • lernendes System

  • Simulation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022