• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Neural network based automated defect detection using induction thermography for surface cracks of forged parts
 
  • Details
  • Full
Options
2020
Conference Paper
Titel

Neural network based automated defect detection using induction thermography for surface cracks of forged parts

Abstract
A fully convolutional neural network was set up for the detection of crack-type defects and for the defect shape prediction of thermography datasets. The method uses a supervised neural network for sematic segmentation (U-Net). For these tasks, training datasets of forged parts were acquired through induction thermography. The approach provides a significant improvement over conventional methods of thermal signal and image processing used in active thermography. Furthermore, the results may lead to new procedures for a quantitative evaluation of flaws and defects in non-destructive testing using infrared thermography.
Author(s)
Müller, David
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP
Netzelmann, Udo
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP
Ehlen, Andreas
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP
Finckbohner, Michael
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP
Valeske, Bernd
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP
Hauptwerk
QIRT 2020, 15th Quantitative InfraRed Thermography Conference. Online resource
Konferenz
Quantitative InfraRed Thermography Conference (QIRT) 2020
Thumbnail Image
DOI
10.21611/qirt.2020.015
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP
Tags
  • neural network

  • defect detection

  • induction thermograph...

  • cracks

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022