• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Convolutional Autoencoders for Health Indicators Extraction in Piezoelectric Sensors
 
  • Details
  • Full
Options
2020
Conference Paper
Titel

Convolutional Autoencoders for Health Indicators Extraction in Piezoelectric Sensors

Abstract
We present a method for health indicator extraction from piezoelectric sensors applied in the case of microfluidic valves. Convolutional autoencoders were used to train a model on the normal operating conditions and tested on signals of different valves. The results of the model performance evaluation, as well as, the qualitative presentation of the indicator plots for each tested component, showed that the used approach is capable of detecting features that correspond to increasing component degradation. The extracted health indicators are the prerequisite and input for reliable remaining useful time prediction.
Author(s)
Kraljevski, Ivan
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Duckhorn, Frank
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Tschöpe, Constanze
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Wolff, Matthias
BTU Cottbus-Senftenberg
Hauptwerk
IEEE Sensors 2020. Conference Proceedings
Konferenz
Sensors Conference 2020
Thumbnail Image
DOI
10.1109/SENSORS47125.2020.9323023
Language
English
google-scholar
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Tags
  • convolutional autoenc...

  • health indicator

  • piezoelectric sensors...

  • microfluidic valves

  • valves

  • sensors

  • Hidden Markov Models

  • DV-Training

  • feature extraction

  • degradation

  • convolution

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022