• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Combining Matrix Design for 2D DoA Estimation with Compressive Antenna Arrays using Stochastic Gradient Descent
 
  • Details
  • Full
Options
2019
  • Konferenzbeitrag

Titel

Combining Matrix Design for 2D DoA Estimation with Compressive Antenna Arrays using Stochastic Gradient Descent

Abstract
Recently, compressive antenna arrays have been considered for direction of arrival (DoA) estimation with reduced hardware complexity. By utilizing compressive sensing, such arrays employ a linear combining network to combine signals from a larger set of antenna elements in the analog RF domain. In this paper, we develop a design approach based on the minimization of error between spatial correlation function (SCF) of the compressive and the uncompressed array resulting in the estimation performance of the two arrays to be as close as possible. The proposed design is based on grid-free stochastic gradient descent (SGD) optimization. In addition to a low computational cost for the proposed method, we show numerically that the resulting combining matrices perform better than the ones generated by a previous approach and combining matrices generated from a Gaussian ensemble.
Author(s)
Pawar, Sankalp-Prakash
Technische Universität Ilmenau, Germany
Semper, Sebastian
Technische Universität Ilmenau, Germany
Römer, Florian
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP
Hauptwerk
ICASSP 2019, IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings
Konferenz
International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2019
Thumbnail Image
DOI
10.1109/ICASSP.2019.8683173
Language
Englisch
google-scholar
IZFP
Tags
  • doa estimation

  • Compressed Sensing (C...

  • spatial correlation f...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022