• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Improving linear classification using semi-supervised invertible manifold alignment
 
  • Details
  • Full
Options
2018
Konferenzbeitrag
Titel

Improving linear classification using semi-supervised invertible manifold alignment

Abstract
Non-linear effects in hyperspectral data are the result of varying illumination conditions, angular dependencies of reflection, shadows and multiple scattering of incident light. Common classification algorithms like Spectral Angular Mapper (SAM) and Adaptive Coherence Estimator (ACE) struggle to produce good results under these conditions. In this paper, we evaluate our fast Semi-supervised Invertible Manifold Alignment, introduced in [1], on multiple commonly available hyperspectral remote sensing data sets. Additionally, we test it on our new benchmark data set for multitemporal analysis. We show that linear SAM classification on SIMA-transformed data is superior to linear classification on the original data in all cases. Also, SIMA-transformation with subsequent SAM classification produces comparable results to a multi-class Support Vector Machine (SVM), with the benefit of maintaining physical interpretability of the transformed data.
Author(s)
Gross, Wolfgang
Espinosa, Nayeli
Becker, Merlin
Schreiner, Simon
Middelmann, Wolfgang
Hauptwerk
IGARSS 2018, IEEE International Geoscience and Remote Sensing Symposium. Proceedings
Konferenz
International Geoscience and Remote Sensing Symposium (IGARSS) 2018
Thumbnail Image
DOI
10.1109/IGARSS.2018.8517874
Language
Englisch
google-scholar
IOSB
Tags
  • hyperspectral classif...

  • nonlinear effect

  • mitigation

  • manifold alignment

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022