• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. CAD-integrated modelling of lattice structures for additive manufacturing and property evaluation of generated specimens
 
  • Details
  • Full
Options
2017
Conference Paper
Titel

CAD-integrated modelling of lattice structures for additive manufacturing and property evaluation of generated specimens

Alternative
CAD-integriete Erstellung von Gitterstrukturen für die additive Fertigung und Eigenschaftsermittlung solcher Strukturen
Abstract
Using the rich possibilities of design freedom in additive manufacturing, lattice structures are highly recommended as lightweight components with customizable mechanical properties. Until now, parts with lattice structures are mainly used for illustrative purposes and rarely serve as sections of actually working devices with defined functions. This is because their modelling, dimensioning, and build preparation still remains very complex and time-consuming. To simplify this process for the designer, a CAD-integrated tool is developed. Therein, lattice structures of different shape and size can be created easily, are represented on a parametric level, and displayed as textures. In the design process the topology of the whole structure as well as single lattice elements can be customized individually. It enables the designer to create load carrying components which are fully adapted to their specific function. This subsequently results in lightweight parts, less powder consumption, faster build time, and therefore lower costs during manufacturing. Furthermore, a slicing function for direct export of build job files is implemented. The mechanical properties of the structure are automatically computed by means of FEM. All computations shall be finished in reasonable time to minimize hampering of the designer's workflow. For verification of the mechanical property predictions, tensile tests are performed with Ti-6Al-4V and X3NiCoMoTi18-9-5 steel lattice structures following the design suggestions in draft standard DIN 50099. Results show valid accordance with the computed predictions. Extensive studies were carried out to optimize build parameters for different strut sizes. These parameters are stored in an editable database and are automatically included in the build job files. The resulting tool combines all steps from part design to build file generation on a parametric level within a CAD environment. With this tool even designers without experience in additive manufacturing can integrate AM-specific geometries and functions in their components.
Author(s)
Kordaß, Richard
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU
Koch, Peter
Technische Universität Dresden, Institut für Maschienelemente und Maschinenkonstruktion
Töppel, Thomas
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU
Korn, Hannes
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU
Schöne, Christine
Technische Universität Dresden, Institut für Maschienelemente und Maschinenkonstruktion
Müller, Bernhard
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU
Stelzer, Ralph
Technische Universität Dresden, Institut für Maschienelemente und Maschinenkonstruktion
Hauptwerk
Materials Science and Technology, MS&T 2017
Konferenz
Materials Science and Technology Conference and Exhibition (MS&T) 2017
Thumbnail Image
DOI
10.7449/2017/MST_2017_1322_1329
Language
English
google-scholar
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU
Tags
  • laser beam melting

  • lattice structure

  • lightweight design

  • material characteriza...

  • tensile test

  • CAD

  • design

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022