• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Content-based retrieval of 3D models using generative modeling techniques
 
  • Details
  • Full
Options
2014
Conference Paper
Titel

Content-based retrieval of 3D models using generative modeling techniques

Abstract
In this paper we present a novel 3D model retrieval approach based on generative modeling techniques. In our approach generative models are created by domain experts in order to describe 3D model classes. These generative models span a shape space, of which a number of training samples is taken at random. The samples are used to train content-based retrieval methods. With a trained classifier, techniques based on semantic enrichment can be used to index a repository. Furthermore, as our method uses solely generative 3D models in the training phase, it eliminates the cold start problem. We demonstrate the effectiveness of our method by testing it against the Princeton shape benchmark.
Author(s)
Grabner, Harald
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Ullrich, Torsten
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Fellner, Dieter W.
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Hauptwerk
Eurographics Workshop on Graphics and Cultural Heritage, GHC 2014. Short Papers - Posters
Konferenz
Workshop on Graphics and Cultural Heritage (GHC) 2014
Thumbnail Image
DOI
10.2312/gch.20141317
Language
English
google-scholar
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • computer graphics

  • information systems

  • content based retriev...

  • knowledge representat...

  • scene analysis

  • object recognition

  • generative modeling

  • Forschungsgruppe Sema...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022