• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Feature selection in clustering with constraints: Application to active exploration of music collections
 
  • Details
  • Full
Options
2010
Conference Paper
Titel

Feature selection in clustering with constraints: Application to active exploration of music collections

Abstract
Constrained clustering has been developed to improve clustering methods through pairwise constraints. Although the constraints are enhancing the similarity relations between the items, the clustering is conducted in the static feature space. In this paper we embed the information about the constraints to a feature selection procedure, that adapts the feature space regarding the constraints. We propose two methods for the constrained feature selection: similarity-based and constrained-based. We apply the constrained clustering with embedded feature selection for the active exploration of music collections. Our experiments show that proposed feature selection methods improve the results of the constrained clustering.
Author(s)
Mercado, Pedro
Lukashevich, Hanna
Hauptwerk
Ninth International Conference on Machine Learning and Applications, ICMLA 2010
Konferenz
International Conference on Machine Learning and Applications (ICMLA) 2010
Thumbnail Image
DOI
10.1109/ICMLA.2010.100
Language
English
google-scholar
Fraunhofer-Institut für Digitale Medientechnologie IDMT
Tags
  • clustering

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022