• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Analysis and design of efficient multiple-input multiple-output broadband active vibration control systems
 
  • Details
  • Full
Options
2020
Doctoral Thesis
Titel

Analysis and design of efficient multiple-input multiple-output broadband active vibration control systems

Abstract
Vibration phenomena can cause various problems ranging from reduced comfort to severe fatigue. Therefore, vibration control measures need to be taken into account from the early phases of structure's design. A promising approach to this problem is represented by active vibration control (AVC) systems. AVC guarantees high performance on different frequency ranges for several applications. Nevertheless, AVC systems require a constant energy source. Especially for systems composed of numerous actuators and sensors (Multiple-Input Multiple-Output), the required electrical power of the actuators can limit their applications or performance. Therefore, a smart and efficient design of Multiple-Input Multiple-Output AVC systems is needed. In this thesis, the analysis and design of a Multiple-Input Multiple-Output (MIMO) broadband AVC system composed of six electrodynamic inertial mass actuators applied on a six-cell laboratory truss structure is presented. The aims of this work are the analysis of the effects of various design aspects of MIMO AVC systems on the performance and the electrical power required by the actuators and a consequent optimised final design of the system.
ThesisNote
Zugl.: Darmstadt, TU, Diss., 2019
Author(s)
Lapiccirella, Giovanni
Verlag
Fraunhofer Verlag
Verlagsort
Stuttgart
DOI
10.24406/publica-fhg-283096
File(s)
N-589553.pdf (21.11 MB)
Language
English
google-scholar
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
Tags
  • electronics engineeri...

  • automatic control eng...

  • materials science

  • energy efficiency

  • mechanical engineerin...

  • dynamics and vibratio...

  • mechanical engineer

  • automation engineer

  • control engineer

  • structure dynamics en...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022