• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Separating Entangled Workpieces in Random Bin Picking using Deep Reinforcement Learning
 
  • Details
  • Full
Options
2021
  • Zeitschriftenaufsatz

Titel

Separating Entangled Workpieces in Random Bin Picking using Deep Reinforcement Learning

Abstract
Entangled workpiece situations often occur in random bin picking of chaotically stored objects and are a common source of problem in the bin picking process. Previous methods for averting this problem, such as randomly shaking the gripper over the bin, lead to decreasing production efficiency and an increase in cycle time. A promising new strategy uses supervised learning and deep neural networks to learn the separation. However, this approach requires a large amount of labeled data. To overcome this issue, this paper proposes a deep reinforcement learning approach to separate entangled workpieces and to minimize the setup effort.
Author(s)
Moosmann, Marius
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Kulig, Marco
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Spenrath, Felix
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Mönnig, Manuel
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Roggendorf, Simon
RWTH Aachen
Petrovic, Oliver
RWTH Aachen
Bormann, Richard
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Huber, Marco
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Zeitschrift
Procedia CIRP
Konferenz
Conference on Manufacturing Systems (CMS) 2021
Thumbnail Image
DOI
10.1016/j.procir.2021.11.148
Externer Link
Externer Link
Language
Englisch
google-scholar
IPA
Tags
  • bin-picking

  • deep learning

  • Bestärkendes Lernen

  • deep grasping

  • maschinelles Lernen

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022