• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A new machine learning based method for sampling virtual experiments and its effect on the parameter identification for anisotropic yield models
 
  • Details
  • Full
Options
2021
Journal Article
Titel

A new machine learning based method for sampling virtual experiments and its effect on the parameter identification for anisotropic yield models

Abstract
A new method for sampling virtual experiments on the initial yield surface is introduced for the plane stress state. The method is based on a machine learning technique called active learning, which can be used to adaptively sample a parameter space with respect to a certain criterion. For the evaluation of this new method, it is compared against a random sampling approach taken from literature and the effect of both methods on three different anisotropic yield models, namely Yld89, Yld2000-2d and Yld2004-18p (in-plane), is analysed. The results demonstrate that the active learning based sampling approach has advantages over the random sampling approach in terms of reliability and sample efficiency. Moreover, it is found that the effect of the sampling method on the resulting yield surface depends on the anisotropic yield model considered.
Author(s)
Wessel, Alexander
Fraunhofer-Institut für Werkstoffmechanik IWM
Morand, Lukas
Fraunhofer-Institut für Werkstoffmechanik IWM
Butz, Alexander
Fraunhofer-Institut für Werkstoffmechanik IWM
Helm, Dirk
Fraunhofer-Institut für Werkstoffmechanik IWM
Volk, Wolfram
Technical University of Munich
Zeitschrift
IOP conference series. Materials science and engineering
Project(s)
Verbesserte Blechumformsimulation durch 3D-Werkstoffmodelle und erweiterte Schalenformulierungen
Verbesserte Blechumformsimulation durch 3D-Werkstoffmodelle und erweiterte Schalenformulierungen - Teil 2
Maßgeschneiderte Werkstoffeigenschaften durch Mikrostrukturoptimierung: Maschinelle Lernverfahren zur Modellierung und Inversion von Struktur-Eigenschafts-Beziehungen und deren Anwendung auf Blechwerkstoffe
Funder
Deutsches Bundesministerium für Wirtschaft und Energie BMWi
Bundesministerium für Wirtschaft und Energie BMWI
Deutsche Forschungsgemeinschaft DFG
Konferenz
International Deep Drawing Research Group (IDDRG Conference) 2021
Thumbnail Image
DOI
10.1088/1757-899X/1157/1/012026
Language
English
google-scholar
Fraunhofer-Institut für Werkstoffmechanik IWM
Tags
  • machine learning

  • sampling

  • anisotropic yield mod...

  • crystal plasticity mo...

  • active learning

  • adaptive sampling

  • virtual experiments

  • sheet metal forming s...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022