• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A new global kinematic-optical-thermal process model for laser-assisted tape winding with an application to helical-wound pressure vessel
 
  • Details
  • Full
Options
2020
Zeitschriftenaufsatz
Titel

A new global kinematic-optical-thermal process model for laser-assisted tape winding with an application to helical-wound pressure vessel

Abstract
A new global kinematic-optical-thermal (KOT) model is proposed to provide a proper understanding and description of the temperature evolution during laser-assisted tape winding and placement (LATW/LATP) on any arbitrary shaped tooling geometry. Triangular facets are utilized in the kinematic model to define a generic tooling together with a user-defined fiber path and time-dependent process settings such as the tape feeding rate. The time-dependent heat flux distribution on the surfaces is calculated by the optical model and subsequently coupled to the thermal model. The numerical implementation of the developed KOT model is first verified for process simulations of the LATP on a flat tooling by comparing the temperature predictions with the available literature data. To validate the KOT model, a total of four pressure vessels are manufactured with in-line temperature measurements. The process temperature predictions are found to agree well with the measured temperature during the helical winding. The influence of the changing tooling curvature and process speed on the process temperature is found to be significant as shown by the experimental and numerical findings.
Author(s)
Amin Hosseini, S.M.
University of Twente
Schäkel, Martin
Fraunhofer-Institut für Produktionstechnologie IPT
Baran, Ismet
University of Twente
Janssen, Henning
Fraunhofer-Institut für Produktionstechnologie IPT
Drongelen, Martin van
University of Twente
Akkerman, Remko
University of Twente
Zeitschrift
Materials and design
Project(s)
ambliFibre
Funder
European Commission EC
Thumbnail Image
DOI
10.1016/j.matdes.2020.108854
Externer Link
Externer Link
Language
Englisch
google-scholar
IPT
Tags
  • laser-assisted tape w...

  • process simulation

  • process monitoring

  • thermoplastic prepreg...

  • kinematics

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022