• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Detection and removal of infrequent behavior from event streams of business processes
 
  • Details
  • Full
Options
2020
Journal Article
Titel

Detection and removal of infrequent behavior from event streams of business processes

Abstract
Process mining aims at gaining insights into business processes by analyzing the event data that is generated and recorded during process execution. The vast majority of existing process mining techniques works offline, i.e. using static, historical data, stored in event logs. Recently, the notion of online process mining has emerged, in which techniques are applied on live event streams, i.e. as the process executions unfold. Analyzing event streams allows us to gain instant insights into business processes. However, most online process mining techniques assume the input stream to be completely free of noise and other anomalous behavior. Hence, applying these techniques to real data leads to results of inferior quality. In this paper, we propose an event processor that enables us to filter out infrequent behavior from live event streams. Our experiments show that we are able to effectively filter out events from the input stream and, as such, improve online process mining results.
Author(s)
Zelst, S.J. van
Fani Sani, M.
Ostovar, A.
Conforti, R.
Rosa, M. La
Zeitschrift
Information systems
Thumbnail Image
DOI
10.1016/j.is.2019.101451
Language
English
google-scholar
Fraunhofer-Institut für Angewandte Informationstechnik FIT
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022