• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Consequential life cycle assessment of carbon capture and utilization technologies within the chemical industry
 
  • Details
  • Full
Options
2019
  • Zeitschriftenaufsatz

Titel

Consequential life cycle assessment of carbon capture and utilization technologies within the chemical industry

Abstract
Carbon capture and utilization is a promising approach to reduce greenhouse gas emissions and fossil resource depletion in the chemical industry. However, since carbon capture and utilization is an energy and material intensive process, it is unclear whether it allows for a net reduction of environmental impacts on a life cycle perspective. Previous life cycle assessment studies on carbon capture and utilization-focused on the production of one specific chemical or the comparison of C1-basic chemicals and applied an attributional approach. This study assesses twelve CO2-conversion technologies to provide decision support on the potential life-cycle environmental impacts of each technology. Consequential life cycle assessment was chosen as modeling approach to better understand the system-wide environmental consequences of introducing carbon capture and utilization technologies in the chemical industry. This study has identified that in a near- and a long-term scenario the global warming impact for all CO2 conversions technologies, besides dimethoxymethane, electrochemical produced formic acid, and Fischer-Tropsch production, is negative. Formic acid produced via hydrogenation and polyol production are the conversion technologies with the highest potential for reducing the global warming impact on a life cycle perspective. Holistically the polyol production is the conversion technology with the highest potential for reducing environmental impacts. In general, it seems recommendable to introduce carbon capture and utilization within the chemical industry from an environmental perspective.
Author(s)
Thonemann, Nils
Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT
Pizzol, Massimo
Technical Faculty for IT and Design, Aalborg University
Zeitschrift
Energy & environmental science
Thumbnail Image
DOI
10.1039/C9EE00914K
Language
Englisch
google-scholar
UMSICHT Oh
Tags
  • life cycle assessment...

  • carbon capture and ut...

  • chemical industry

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022