• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. High-Precision Measurement of Sine and Pulse Reference Signals Using Software-Defined Radio
 
  • Details
  • Full
Options
2018
Journal Article
Titel

High-Precision Measurement of Sine and Pulse Reference Signals Using Software-Defined Radio

Abstract
This paper addresses simultaneous high-precision measurement and analysis of generic reference signals by using inexpensive commercial off-the-shelf software-defined radio hardware. Sine reference signals are digitally downconverted to baseband for the analysis of phase deviations. Hereby, we compare the precision of the fixed-point hardware digital signal processing chain with a custom single instruction multiple data x86 floating-point implementation. Pulse reference signals are analyzed by a software trigger that precisely locates the time where the slope passes a certain threshold. The measurement system is implemented and verified using the Universal Software Radio Peripheral (USRP) N210 by Ettus Research LLC. Applying standard 10 MHz and 1 PPS reference signals for testing, a measurement precision (standard deviation) of 0.36 and 16.6 ps is obtained, respectively. In connection with standard PC hardware, the system allows long-term acquisition and storage of measurement data over several weeks. A comparison is given to the dual-mixer time difference and time interval counter, which are state-of-the-art measurement methods for sine and pulse signal analysis, respectively. Furthermore, we show that our proposed USRP-based approach outperforms measurements with a high-grade digital sampling oscilloscope.
Author(s)
Andrich, C.
Ihlow, A.
Bauer, J.
Beuster, N.
Del Galdo, G.
Zeitschrift
IEEE transactions on instrumentation and measurement
Thumbnail Image
DOI
10.1109/TIM.2018.2794940
Language
English
google-scholar
Fraunhofer-Institut für Integrierte Schaltungen IIS
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022