• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Evaluating and Improving the Local Robustness of Deep Neural Networks in the Domain of Aerial Perception
 
  • Details
  • Full
Options
March 10, 2025
Bachelor Thesis
Title

Evaluating and Improving the Local Robustness of Deep Neural Networks in the Domain of Aerial Perception

Abstract
Semantic segmentation models are highly vulnerable to adversarial attacks, highlighting the need for improved Local Robustness. Local robustness reflects how robust the prediction of a trained model is with respect to input perturbations. To address the lack of local robustness in the context of Deep Learning, we apply a robust training scheme to the Unified Perceptual Parsing for Scene Understanding (UPerNet) architecture. In addition, we extend the Cross-Lipschitz Extreme Value for nEtwork Robustness (CLEVER) estimation to the segmentation task. The dataset of interest is the AeroScapes dataset, containing images and the corresponding semantic segmentation mask from the perspective of a drone. The used training scheme significantly improves the local robustness against white box adversarial attacks while maintaining the baseline performance of the model. The CLEVER evaluation further substantiates these improvements and suggests future directions for better qualitative evaluation of local robustness and the robust training scheme.
Thesis Note
Regensburg, TH, Bachelor Thesis, 2025
Author(s)
Hirsch, Lukas
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Advisor(s)
Baumann, Timo  
Ostbayerische Technische Hochschule Regensburg
Jain, Brijnesh
Ostbayerische Technische Hochschule Regensburg
Meeß, Henri
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Language
English
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Keyword(s)
  • semantic segmentation model

  • local robustness

  • deep learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024