• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Towards Probabilistic Safety Guarantees for Model-Free Reinforcement Learning
 
  • Details
  • Full
Options
2023
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Towards Probabilistic Safety Guarantees for Model-Free Reinforcement Learning

Title Supplement
Position Paper published on HAL science ouverte
Abstract
Improving safety in model-free Reinforcement Learning is necessary if we expect to deploy such systems in safety-critical scenarios. However, most of the existing constrained Reinforcement Learning methods have no formal guarantees for their constraint satisfaction properties. In this paper, we show the theoretical formulation for a safety layer that encapsulates model epistemic uncertainty over a distribution of constraint model approximations and can provide probabilistic guarantees of constraint satisfaction.
Author(s)
Schmoeller da Roza, Felippe
Fraunhofer-Institut für Kognitive Systeme IKS  
Roscher, Karsten  
Fraunhofer-Institut für Kognitive Systeme IKS  
Günneman, Stephan
Technische Universität München  
Project(s)
IKS-Ausbauprojekt  
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
International Conference on Computer Safety, Reliability and Security 2023  
File(s)
Download (71.77 KB)
Link
Link
Rights
Use according to copyright law
DOI
10.24406/publica-1983
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • reinforcement learning

  • RL

  • artificial intelligence

  • AI

  • safety

  • safe AI

  • constrained Markov decision process

  • CMDP

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024