Options
Prof. Dr.
Wrobel, Stefan
Now showing
1 - 4 of 4
-
PublicationLeitfaden zur Gestaltung vertrauenswürdiger Künstlicher Intelligenz (KI-Prüfkatalog)(Fraunhofer IAIS, 2021)
;Cremers, Armin B. ;Sicking, Joachim -
PublicationTrustworthy Use of Artificial Intelligence( 2019-07)
;Cremers, Armin B. ;Englander, Alex ;Gabriel, Markus ;Rostalski, Frauke ;Sicking, Joachim ;Volmer, Julia ;Voosholz, JanThis publication forms a basis for the interdisciplinary development of a certification system for artificial intelligence. In view of the rapid development of artificial intelligence with disruptive and lasting consequences for the economy, society, and everyday life, it highlights the resulting challenges that can be tackled only through interdisciplinary dialog between IT, law, philosophy, and ethics. As a result of this interdisciplinary exchange, it also defines six AI-specific audit areas for trustworthy use of artificial intelligence. They comprise fairness, transparency, autonomy and control, data protection as well as security and reliability while addressing ethical and legal requirements. The latter are further substantiated with the aim of operationalizability. -
PublicationVertrauenswürdiger Einsatz von Künstlicher Intelligenz(Fraunhofer IAIS, 2019)
;Cremers, Armin B. ;Englander, Alex ;Gabriel, Markus ;Rostalski, Frauke ;Sicking, Joachim ;Voosholz, JanDie vorliegende Publikation dient als Grundlage für die interdisziplinäre Entwicklung einer Zertifizierung von Künstlicher Intelligenz. Angesichts der rasanten Entwicklung von Künstlicher Intelligenz mit disruptiven und nachhaltigen Folgen für Wirtschaft, Gesellschaft und Alltagsleben verdeutlicht sie, dass sich die hieraus ergebenden Herausforderungen nur im interdisziplinären Dialog von Informatik, Rechtswissenschaften, Philosophie und Ethik bewältigen lassen. Als Ergebnis dieses interdisziplinären Austauschs definiert sie zudem sechs KI-spezifische Handlungsfelder für den vertrauensvollen Einsatz von Künstlicher Intelligenz: Sie umfassen Fairness, Transparenz, Autonomie und Kontrolle, Datenschutz sowie Sicherheit und Verlässlichkeit und adressieren dabei ethische und rechtliche Anforderungen. Letztere werden mit dem Ziel der Operationalisierbarkeit weiter konkretisiert. -
PublicationToolkit-based high-performance data mining of large data on MapReduce clusters( 2009)
;Adranale, D.The enormous growth of data in a variety of applications has increased the need for high performance data mining based on distributed environments. However, standard data mining toolkits per se do not allow the usage of computing clusters. The success of MapReduce for analyzing large data has raised a general interest in applying this model to other, data intensive applications. Unfortunately current research has not lead to an integration of GUI based data mining toolkits with distributed file system based MapReduce systems. This paper defines novel principles for modeling and design of the user interface, the storage model and the computational model necessary for the integration of such systems. Additionally, it introduces a novel system architecture for interactive GUI based data mining of large data on clusters based on MapReduce that overcomes the limitations of data mining toolkits. As an empirical demonstration we show an implementation based on Weka and Hadoop.