Now showing 1 - 5 of 5
  • Publication
    Towards Human-Interpretable Prototypes for Visual Assessment of Image Classification Models
    Explaining black-box Artificial Intelligence (AI) models is a cornerstone for trustworthy AI and a prerequisite for its use in safety critical applications such that AI models can reliably assist humans in critical decisions. However, instead of trying to explain our models post-hoc, we need models which are interpretable-by-design built on a reasoning process similar to humans that exploits meaningful high-level concepts such as shapes, texture or object parts. Learning such concepts is often hindered by its need for explicit specification and annotation up front. Instead, prototype-based learning approaches such as ProtoPNet claim to discover visually meaningful prototypes in an unsupervised way. In this work, we propose a set of properties that those prototypes have to fulfill to enable human analysis, e.g. as part of a reliable model assessment case, and analyse such existing methods in the light of these properties. Given a ‘Guess who?’ game, we find that these prototypes still have a long way ahead towards definite explanations. We quantitatively validate our findings by conducting a user study indicating that many of the learnt prototypes are not considered useful towards human understanding. We discuss about the missing links in the existing methods and present a potential real-world application motivating the need to progress towards truly human-interpretable prototypes.
  • Publication
    Towards Human-Interpretable Prototypes for Visual Assessment of Image Classification Models
    Explaining black-box Artificial Intelligence (AI) models is a cornerstone for trustworthy AI and a prerequisite for its use in safety critical applications such that AI models can reliably assist humans in critical decisions. However, instead of trying to explain our models post-hoc, we need models which are interpretable-by-design built on a reasoning process similar to humans that exploits meaningful high-level concepts such as shapes, texture or object parts. Learning such concepts is often hindered by its need for explicit specification and annotation up front. Instead, prototype-based learning approaches such as ProtoPNet claim to discover visually meaningful prototypes in an unsupervised way. In this work, we propose a set of properties that those prototypes have to fulfill to enable human analysis, e.g. as part of a reliable model assessment case, and analyse such existing methods in the light of these properties. Given a 'Guess who?' game, we find that these prototypes still have a long way ahead towards definite explanations. We quantitatively validate our findings by conducting a user study indicating that many of the learnt prototypes are not considered useful towards human understanding. We discuss about the missing links in the existing methods and present a potential real-world application motivating the need to progress towards truly human-interpretable prototypes.
  • Publication
    Is it all a cluster game?
    ( 2022) ;
    Koner, Rajat
    ;
    ;
    Günnemann, Stephan
    It is essential for safety-critical applications of deep neural networks to determine when new inputs are significantly different from the training distribution. In this paper, we explore this out-of-distribution (OOD) detection problem for image classification using clusters of semantically similar embeddings of the training data and exploit the differences in distance relationships to these clusters between in- and out-of-distribution data. We study the structure and separation of clusters in the embedding space and find that the supervised contrastive learning leads to well separated clusters while its self-supervised counterpart fails to do so. In our extensive analysis of different training methods, clustering strategies, distance metrics and thresholding approaches, we observe that there is no clear winner. The optimal approach depends on the model architecture and selected datasets for in- and out-of-distribution. While we could reproduce the outstanding results for contrastive training on CIFAR-10 as in-distribution data, we find standard cross-entropy paired with cosine similarity outperforms all contrastive training methods when training on CIFAR-100 instead. Cross-entropy provides competitive results as compared to expensive contrastive training methods.
  • Publication
    OODformer: Out-Of-Distribution Detection Transformer
    ( 2021)
    Koner, Rajat
    ;
    ; ;
    Günnemann, Stephan
    ;
    Tresp, Volker
    A serious problem in image classification is that a trained model might perform well for input data that originates from the same distribution as the data available for model training, but performs much worse for out-of-distribution (OOD) samples. In real-world safety-critical applications, in particular, it is important to be aware if a new data point is OOD. To date, OOD detection is typically addressed using either confidence scores, auto-encoder based reconstruction, or contrastive learning. However, the global image context has not yet been explored to discriminate the non-local objectness between in-distribution and OOD samples. This paper proposes a first-of-its-kind OOD detection architecture named OODformer that leverages the contextualization capabilities of the transformer. Incorporating the transformer as the principal feature extractor allows us to exploit the object concepts and their discriminatory attributes along with their co-occurrence via visual attention. Based on contextualised embedding, we demonstrate OOD detection using both class-conditioned latent space similarity and a network confidence score. Our approach shows improved generalizability across various datasets. We have achieved a new state-of-the-art result on CIFAR-10/-100 and ImageNet30.
  • Publication
    Is Uncertainty Quantification in Deep Learning Sufficient for Out-of-Distribution Detection?
    Reliable information about the uncertainty of predictions from deep neural networks could greatly facilitate their utilization in safety-critical applications. Current approaches for uncertainty quantification usually focus on in-distribution data, where a high uncertainty should be assigned to incorrect predictions. In contrast, we focus on out-of-distribution data where a network cannot make correct predictions and therefore should always report high uncertainty. In this paper, we compare several state-of-the-art uncertainty quantification methods for deep neural networks regarding their ability to detect novel inputs. We evaluate them on image classification tasks with regard to metrics reflecting requirements important for safety-critical applications. Our results show that a portion of out-of-distribution inputs can be detected with reasonable loss in overall accuracy. However, current uncertainty quantification approaches alone are not sufficient for an overall reliable out-of-distribution detection.