Now showing 1 - 10 of 20
No Thumbnail Available
Publication

Vom Textgenerator zum digitalen Experten

2021-09-08 , Paaß, Gerhard , Hecker, Dirk

Neue Sprachprogramme wie GPT-3 geben Maschinen nicht nur ein menschenähnliches Sprachgefühl, sondern sollen sie zugleich zu Fachleuten machen können. Was steckt dahinter? Und kann das gelingen?

No Thumbnail Available
Publication

Künstliche Intelligenz

2020-12-01 , Paaß, Gerhard , Hecker, Dirk

Künstliche Intelligenz (KI) ist heute schon in unserem Alltag präsent und wird uns zukünftig in nahezu allen Lebensbereichen begegnen von der bildgestützten Diagnose in der Medizin über das autonome Fahren und die intelligente Maschinenwartung in der Industrie bis hin zur Sprachsteuerung im smarten Zuhause. Die Potenziale der KI sind enorm, gleichzeitig kursieren viele Mythen, Ungewissheiten und Herausforderungen, die es zu meistern gilt. Dieses Buch adressiert daher die breite Öffentlichkeit von interessierten Bürgerinnen und Bürgern bis hin zur Leitungsebene in Unternehmen, die ein besseres und tieferes technisches Verständnis von KI-Technologien aufbauen und deren Folgen abschätzen möchten. In verständlicher Sprache werden mathematische Grundlagen, Begriffe und Methoden erläutert. Eine abschließende Diskussion der Chancen und Herausforderungen hilft den Leserinnen und Lesern, die Entwicklungen zu bewerten, sie zu entmystifizieren und ihre Relevanz für die Zukunft zu erkennen.

No Thumbnail Available
Publication

Vertrauenswürdiger Einsatz von Künstlicher Intelligenz

2019 , Cremers, Armin B. , Englander, Alex , Gabriel, Markus , Hecker, Dirk , Mock, Michael , Poretschkin, Maximilian , Rosenzweig, Julia , Rostalski, Frauke , Sicking, Joachim , Volmer, Julia , Voosholz, Jan , Voß, Angelika , Wrobel, Stefan

Die vorliegende Publikation dient als Grundlage für die interdisziplinäre Entwicklung einer Zertifizierung von Künstlicher Intelligenz. Angesichts der rasanten Entwicklung von Künstlicher Intelligenz mit disruptiven und nachhaltigen Folgen für Wirtschaft, Gesellschaft und Alltagsleben verdeutlicht sie, dass sich die hieraus ergebenden Herausforderungen nur im interdisziplinären Dialog von Informatik, Rechtswissenschaften, Philosophie und Ethik bewältigen lassen. Als Ergebnis dieses interdisziplinären Austauschs definiert sie zudem sechs KI-spezifische Handlungsfelder für den vertrauensvollen Einsatz von Künstlicher Intelligenz: Sie umfassen Fairness, Transparenz, Autonomie und Kontrolle, Datenschutz sowie Sicherheit und Verlässlichkeit und adressieren dabei ethische und rechtliche Anforderungen. Letztere werden mit dem Ziel der Operationalisierbarkeit weiter konkretisiert.

No Thumbnail Available
Publication

Fraunhofer Big Data and Artificial Intelligence Alliance

2019 , Wrobel, Stefan , Hecker, Dirk

Big data is a management issue across sectors and promises to deliver a competitive advantage via structured knowledge, increased efficiency and value creation. Within companies, there is significant demand for big data skills, individual business models, and technological solutions. Fraunhofer assists companies to identify and mine their valuable data. Experts from Fraunhofers Big Data and Artificial Intelligence Alliance demonstrate how companies can benefit from an intelligent enrichment and analysis of their data.

No Thumbnail Available
Publication

tanh Neurons are Bayesian Decision Makers

2021 , Bauckhage, Christian , Sifa, Rafet , Hecker, Dirk

The hyperbolic tangent (tanh) is a traditional choice for the activation function of the neurons of an artificial neural network. Here, we go through a simple calculation that shows that this modeling choice is linked to Bayesian decision theory. Our brief, tutorial-like discussion is intended as a reference to an observation rarely mentioned in standard textbooks.

No Thumbnail Available
Publication

Deutsche Normungsroadmap Künstliche Intelligenz

2020 , Adler, R. , Kolomiichuk, Sergii , Hecker, Dirk , Lämmel, Philipp , Ma, Jackie , Marko, Angelina , Mock, Michael , Nagel, Tobias , Poretschkin, Maximilian , Rennoch, Axel , Röhler, Marcus , Ruf, Miriam , Schönhof, Raoul , Schneider, Martin A. , Tcholtchev, Nikolay , Ziehn, Jens , Böttinger, Konstantin , Jedlitschka, Andreas , Oala, Luis , Sperl, Philip , Wenzel, Markus , et al.

Die deutsche Normungsroadmap Künstliche Intelligenz (KI) verfolgt das Ziel, für die Normung Handlungsempfehlungen rund um KI zu geben, denn sie gilt in Deutschland und Europa in fast allen Branchen als eine der Schlüsseltechnologien für künftige Wettbewerbsfähigkeit. Die EU geht davon aus, dass die Wirtschaft in den kommenden Jahren mit Hilfe von KI stark wachsen wird. Umso wichtiger sind die Empfehlungen der Normungsroadmap, die die deutsche Wirtschaft und Wissenschaft im internationalen KI-Wettbewerb stärken, innovationsfreundliche Bedingungen schaffen und Vertrauen in die Technologie aufbauen sollen.

No Thumbnail Available
Publication

A QUBO Formulation of the k-Medoids Problem

2019 , Bauckhage, Christian , Piatkowski, Nico , Sifa, Rafet , Hecker, Dirk , Wrobel, Stefan

We are concerned with k-medoids clustering and propose aquadratic unconstrained binary optimization (QUBO) formulation of the problem of identifying k medoids among n data points without having to cluster the data. Given our QUBO formulation of this NP-hard problem, it should be possible to solve it on adiabatic quantum computers.

No Thumbnail Available
Publication

Constructing Spaces and Times for Tactical Analysis in Football

2021 , Andrienko, Gennady , Andrienko, Natalia , Anzer, Gabriel , Bauer, Pascal , Budziak, Guido , Fuchs, Georg , Hecker, Dirk , Weber, Hendrik , Wrobel, Stefan

A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an approach that includes a combination of query techniques for flexible selection of episodes of situation development, a method for dynamic aggregation of data from selected groups of episodes, and a data structure for representing the aggregates that enables their exploration and use in further analysis. The aggregation, which is meant to abstract general movement patterns, involves construction of new time-homomorphic reference systems owing to iterative application of aggregation operators to a sequence of data selections. As similar patterns may occur at different spatial locations, we also propose constructing new spatial reference systems for aligning and matching movements irrespective of their absolute locations. The approach was tested in application to tracking data from two Bundesliga games of the 2018/2019 season. It enabled detection of interesting and meaningful general patterns of team behaviors in three classes of situations defined by football experts. The experts found the approach and the underlying concepts worth implementing in tools for football analysts.

No Thumbnail Available
Publication

Quantum Machine Learning. Eine Analyse zu Kompetenz, Forschung und Anwendung

2020 , Bauckhage, Christian , Brito, Eduardo , Daase, Inga , Franken, Lukas , Georgiev, Bogdan , Hecker, Dirk , Paschke, Adrian , Piatkowski, Nico , Soddemann, Thomas , Trabold, Daniel

In unserer Studie »Quantum Machine Learning« geben wir einen Einblick in das Quantencomputing, erklären, welche physikalischen Effekte eine Rolle spielen und wie diese dazu genutzt werden, Verfahren des Maschinellen Lernens zu beschleunigen. Neben den logischen Komponenten werden auch Techniken für die Implementierung der Hardware von Quantencomputern vorgestellt. Die Studie gibt außerdem einen Überblick über die aktuelle Forschungs- und Kompetenzlandschaft und ordnet die Position Deutschlands im internationalen Wettbewerb ein. Zudem stellt die Studie konkrete Anwendungsbereiche und Marktpotenziale für verschiedene Branchen vor. Denn in den kommenden Jahren werden Unternehmen aus unterschiedlichen Branchen vor der Herausforderung stehen, neue Markt- und Geschäftspotenziale mithilfe des Quantencomputings zu erarbeiten, um ihre Wertschöpfung zu steigern. Mit dieser Studie möchten wir Akteuren aus Wirtschaft, Wissenschaft und Gesellschaft Orientierung bieten und die Potenziale aufzeigen, die schon heute sichtbar sind und in Zukunft in Unternehmen Einsatz finden werden.

No Thumbnail Available
Publication

Informed Machine Learning for Industry

2019 , Bauckhage, Christian , Schulz, Daniel , Hecker, Dirk

Deep neural networks have pushed the boundaries of artificial intelligence but their training requires vast amounts of data and high performance hardware. While truly digitised companies easily cope with these prerequisites, traditional industries still often lack the kind of data or infrastructures the current generation of end-to-end machine learning depends on. The Fraunhofer Center for Machine Learning therefore develops novel solutions which are informed by expert knowledge. These typically require less training data and are more transparent in their decision-making processes.