Now showing 1 - 2 of 2
No Thumbnail Available
Publication

KI-Engineering in der Produktion

2023 , Frey, Christian , Goßmann, Ann-Kathrin , Hasterok, Constanze , Hertweck, Philipp , Kühnert, Christian , Pfrommer, Julius , Usländer, Thomas , Ernis, Gunar , Hecker, Dirk , Poretschkin, Maximilian , Schulz, Daniel , Wegener, Dennis , Wirtz, Tim , Zimmermann, Alexander , Usländer, Thomas , Schulz, Daniel

Um Methoden der künstlichen Intelligenz (KI) in IT-Systemen der industriellen Produktion nachhaltig und operativ einzusetzen, bedarf es der Methodik des KI-Engineering. KI-Engineering adressiert die systematische Entwicklung und den Betrieb von KI-basierten Lösungen als Teil von Systemen, die komplexe Aufgaben erfüllen. Ziel ist es, das Innovations- und Optimierungspotenzial von KI-Verfahren in der industriellen Produktion nutzen zu können. Die Studie spannt die Dimensionen für KI-Engineering-Anwendungen auf, umreißt die qualitativen Anforderungen in der Entwicklung und im Betrieb unter dem Blickwinkel des Anwenders und Entscheiders. Verschiedene Anwendungsfälle werden in vier Autonomiestufen eingeordnet: von KI-basierten Assistenzfunktionen bis hin zu autonomen und adaptiven Systemen. Zudem werden passende Lösungsmethoden aufgezeigt. Ein Kapitel widmet sich den technischen und organisatorischen Schulden beim Einsatz von KI-Methoden. Hierin wird als Antwort das KI-Engineering-Vorgehensmodell PAISE® im Kontext bestehender Modelle aus dem Data Mining und dem Software-Engineering erläutert. Im Anschluss werden relevante Initiativen und Projekte beschrieben und anstehende Entwicklungen umrissen.

No Thumbnail Available
Publication

Trustworthy Use of Artificial Intelligence

2019-07 , Cremers, Armin B. , Englander, Alex , Gabriel, Markus , Hecker, Dirk , Mock, Michael , Poretschkin, Maximilian , Rosenzweig, Julia , Rostalski, Frauke , Sicking, Joachim , Volmer, Julia , Voosholz, Jan , Voß, Angelika , Wrobel, Stefan

This publication forms a basis for the interdisciplinary development of a certification system for artificial intelligence. In view of the rapid development of artificial intelligence with disruptive and lasting consequences for the economy, society, and everyday life, it highlights the resulting challenges that can be tackled only through interdisciplinary dialog between IT, law, philosophy, and ethics. As a result of this interdisciplinary exchange, it also defines six AI-specific audit areas for trustworthy use of artificial intelligence. They comprise fairness, transparency, autonomy and control, data protection as well as security and reliability while addressing ethical and legal requirements. The latter are further substantiated with the aim of operationalizability.