Options
Now showing
1 - 2 of 2
-
PublicationEdge Computing aus Sicht der Künstlichen Intelligenz( 2018)
;Sicking, JoachimDieser Beitrag stellt die Schlüsseltechnologie der modernen KI vor: das maschinelle Lernen (ML) und speziell das Lernen mit künstlichen neuronalen Netzen. Er erklärt, wie ein solches Modell unmittelbar an den Orten der Datenentstehung gelernt werden kann ganz ohne Kommunikation von Rohdaten. Dieses Paradigma wird als verteiltes Lernen oder kurz Lernen an der Edge bezeichnet, im Gegensatz zum heute vorherrschenden Lernen in der Cloud. Künstliche Intelligenz ist in den letzten Jahren in unseren Alltag eingezogen, in Form von Sprachassistenten und Übersetzern, Objekt- und Gesichtserkennung, Produktempfehlungen und personalisierten Informationen. Die gemeinsame Technik hinter all diesen Fähigkeiten ist das maschinelle Lernen. Gemeinsamer Enabler von maschinellem Lernen und Bi g Data ist die nahezu exponentiell wachsende Verfügbarkeit an Ressourcen wie Rechenleistung und Speicherkapazität. -
PublicationSkalierbarkeit und Architektur von Big-Data-Anwendungen( 2014)Big-Data-Komponenten, mit denen die Internetriesen wie Google, Facebook oder Amazon ihre Big-Data-Anwendungen bauen, werden von Open-Source-Communities angeboten und vielfach ergänzt. Die technologische Basis, Chancen von Big Data zu nutzen, ist sowohl frei verfügbar, als auch im Portfolio großer Systemanbieter umfangreich enthalten. Trotzdem stehen vor der Entwicklung einer Big-Data-Anwendung vergleichsweise hohe Hürden: Big-Data-Komponenten haben gemeinhin einen geringeren Funktionsumfang, als man es bisher zum Beispiel von einem Betriebssystem, einer klassischen relationalen Datenbank oder einem BI-System gewohnt ist. Dieser Beitrag gibt einen Einblick über die wesentliche technische Leistung und den damit verbundenen Nutzen von Big-Data-Komponenten. Anschließend wird an einem konkreten Beispiel gezeigt, wie im Konzept der Lambda-Architektur Komponenten aufeinander abgestimmt eingesetzt werden.