Now showing 1 - 10 of 11
No Thumbnail Available
Publication

Sprachversteher

2022-04-09 , Hecker, Dirk , Paass, Gerhard

Tiefe neuronale Sprachmodelle wie GPT-3 schreiben ansprechende Texte, garnieren sie aber oft mit erfundenen Fakten. Jüngste Modelle überprüfen ihre Inhalte selbst und könnten so schon bald Hausaufgaben oder News generieren. Ein Einblick in die Entwicklung.

No Thumbnail Available
Publication

Constructing Spaces and Times for Tactical Analysis in Football

2021 , Andrienko, Gennady , Andrienko, Natalia , Anzer, Gabriel , Bauer, Pascal , Budziak, Guido , Fuchs, Georg , Hecker, Dirk , Weber, Hendrik , Wrobel, Stefan

A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an approach that includes a combination of query techniques for flexible selection of episodes of situation development, a method for dynamic aggregation of data from selected groups of episodes, and a data structure for representing the aggregates that enables their exploration and use in further analysis. The aggregation, which is meant to abstract general movement patterns, involves construction of new time-homomorphic reference systems owing to iterative application of aggregation operators to a sequence of data selections. As similar patterns may occur at different spatial locations, we also propose constructing new spatial reference systems for aligning and matching movements irrespective of their absolute locations. The approach was tested in application to tracking data from two Bundesliga games of the 2018/2019 season. It enabled detection of interesting and meaningful general patterns of team behaviors in three classes of situations defined by football experts. The experts found the approach and the underlying concepts worth implementing in tools for football analysts.

No Thumbnail Available
Publication

Edge Computing aus Sicht der Künstlichen Intelligenz

2018 , Hecker, Dirk , Mock, Michael , Sicking, Joachim , Voß, Angelika , Wirtz, Tim

Dieser Beitrag stellt die Schlüsseltechnologie der modernen KI vor: das maschinelle Lernen (ML) und speziell das Lernen mit künstlichen neuronalen Netzen. Er erklärt, wie ein solches Modell unmittelbar an den Orten der Datenentstehung gelernt werden kann ganz ohne Kommunikation von Rohdaten. Dieses Paradigma wird als verteiltes Lernen oder kurz Lernen an der Edge bezeichnet, im Gegensatz zum heute vorherrschenden Lernen in der Cloud. Künstliche Intelligenz ist in den letzten Jahren in unseren Alltag eingezogen, in Form von Sprachassistenten und Übersetzern, Objekt- und Gesichtserkennung, Produktempfehlungen und personalisierten Informationen. Die gemeinsame Technik hinter all diesen Fähigkeiten ist das maschinelle Lernen. Gemeinsamer Enabler von maschinellem Lernen und Bi g Data ist die nahezu exponentiell wachsende Verfügbarkeit an Ressourcen wie Rechenleistung und Speicherkapazität.

No Thumbnail Available
Publication

Constructing semantic interpretation of routine and anomalous mobility behaviors from big data

2015 , Fuchs, Georg , Stange, Hendrik , Hecker, Dirk , Andrienko, Natalia , Andrienko, Gennady

Annually organized VAST Challenges provide a unique opportunity to analyze complex data with available ground truth. In 2014, one of the tasks was to interpret routine and anomalous patterns of human mobility based on big data: trajectories of cars and credit card transactions. We describe a scalable visual analytics approach to solving this problem. Repeatedly visited personal and public places were extracted from trajectories by finding spatial clusters of stop points. Temporal patterns of peoples presence in the places resulted from spatio-temporal aggregation of the data by the places and hourly intervals within the weekly cycle. Based on these patterns, we identified the meanings or purposes of the places: home, work, breakfast, lunch and dinner, etc. Meanings of some places could be refined using the credit card transaction data. By representing the place meanings as points on a 2D plane, we built an abstract semantic space and transformed the original trajectories to trajectories in the semantic space, i.e., performed semantic abstraction of the data. Spatio-temporal aggregation of the transformed trajectories into flows between the semantic places and subsequent clustering of time intervals by the similarity of the flow situations allowed us to reveal and analyze the routine movement behaviors. To detect anomalies, we (a) investigated the visits to the places with unknown meanings, and (b) looked for unusual presence times or visit durations at different semantic places. The analysis is scalable since all tools and methods can be applied to much larger data. Moreover, the semantic data abstraction can serve as a tool for protecting the personal privacy.

No Thumbnail Available
Publication

Supporting Visual Exploration of Iterative Job Scheduling

2022-03-30 , Andrienko, Gennady , Andrienko, Natalia , Garcia, Jose Manuel Cordero , Hecker, Dirk , Vouros, George A.

We consider the general problem known as job shop scheduling, in which multiple jobs consist of sequential operations that need to be executed or served by appropriate machines having limited capacities. For example, train journeys (jobs) consist of moves and stops (operations) to be served by rail tracks and stations (machines). A schedule is an assignment of the job operations to machines and times where and when they will be executed. The developers of computational methods for job scheduling need tools enabling them to explore how their methods work. At a high level of generality, we define the system of pertinent exploration tasks and a combination of visualizations capable of supporting the tasks. We provide general descriptions of the purposes, contents, visual encoding, properties, and interactive facilities of the visualizations and illustrate them with images from an example implementation in air traffic management. We justify the design of the visualizations based on the tasks, principles of creating visualizations for pattern discovery, and scalability requirements. The outcomes of our research are sufficiently general to be of use in a variety of applications.

No Thumbnail Available
Publication

Informed Machine Learning for Industry

2019 , Bauckhage, Christian , Schulz, Daniel , Hecker, Dirk

Deep neural networks have pushed the boundaries of artificial intelligence but their training requires vast amounts of data and high performance hardware. While truly digitised companies easily cope with these prerequisites, traditional industries still often lack the kind of data or infrastructures the current generation of end-to-end machine learning depends on. The Fraunhofer Center for Machine Learning therefore develops novel solutions which are informed by expert knowledge. These typically require less training data and are more transparent in their decision-making processes.

No Thumbnail Available
Publication

Künstliche Intelligenz und die Potenziale des maschinellen Lernens für die Industrie

2017 , Hecker, Dirk , Döbel, Inga , Rüping, Stefan , Schmitz, Velina , Voß, Angelika

Maschinelles Lernen ist die Schlüsseltechnologie für intelligente Systeme. Beson¬ders erfolgreich ist in den letzten Jahren das Lernen tiefer Modelle aus großen Datenmengen - ""Deep Learning"". Mit dem Internet der Dinge rollt die nächste, noch größere Datenwelle auf uns zu. Hier bietet die Künstliche Intelligenz beson¬dere Chancen für die deutsche Industrie, wenn sie schnell genug in die Digitalisierung einsteigt.

No Thumbnail Available
Publication

Vom Textgenerator zum digitalen Experten

2021-09-08 , Paaß, Gerhard , Hecker, Dirk

Neue Sprachprogramme wie GPT-3 geben Maschinen nicht nur ein menschenähnliches Sprachgefühl, sondern sollen sie zugleich zu Fachleuten machen können. Was steckt dahinter? Und kann das gelingen?

No Thumbnail Available
Publication

Gefragte Profis Data Science für Ingenieure

2018 , Hecker, Dirk

Im Zuge von Digitalisierung und Automatisierung werden nicht nur Prozesse und Strukturen völlig neu gestaltet. Auch die Berufsbilder verändern sich, erfordern andere Kompetenzen. Arbeits- und Tätigkeitsprofile entstehen neu. Wie schon beim Dotcom-Boom 1997 herrscht aktuell ein Kampf um Talente. Speziell Data-Science-Kompetenzen sind auf dem Arbeitsmarkt gefragter denn je. Der Fokus liegt dabei nicht nur auf den IT-, sondern auch auf kommunikativen und interdisziplinären Fähigkeiten. Der Innovationsdruck verlangt eine permanente Anpassung: IT-Wissen veraltet schneller als noch vor fünf oder zehn Jahren.

No Thumbnail Available
Publication

Big-Data-Geschäftsmodelle - die drei Seiten der Medaille

2016 , Hecker, Dirk , Koch, Daniel Jeffrey , Heydecke, Jörg , Werkmeister, Christoph

Digitalisierung, Digitalisierung, Digitalisierung! Überall wird sie propagiert, viele geben vor, sie zu betreiben, wenige wissen das Thema richtig anzugehen. Definitionen von Digitalisierung gibt es viele. Eine treffende stammt von der BITKOM [1], die Digitalisierung als eine Überführung analoger in digitale Daten versteht: ""[Es] ändern sich die Geschäftstätigkeiten von der realen in die virtuelle Welt. Neben einer starken Vernetzung von Menschen und Objekten, werden dabei viele neue Innovationen erwartet, die zu branchen- und sektorübergreifenden Veränderungen führen."" Digitalisierung bedeutet also Transformation, die wirtschaftliches Handeln grundsätzlich verändert. Neue Geschäftsmodelle ersetzen bisherige, Wertschöpfungsketten setzen sich neu zusammen, Wettbewerbssituationen verändern sich radikal. Viele Unternehmen stellen sich der Herausforderung der Digitalisierung noch nicht, denn viele haben aktuell noch keinen Handlungsbedarf, sehen sich etwa noch keinen Bedrohungsszenarien ausgesetzt. Somit verwundert der ""Monitoring Report Wirtschaft digital 2015 für das BMWI"", erstellt von TNS Infratest [2], nicht: Er zeigt auf, dass die deutsche gewerbliche Wirtschaft in der Digitalisierung noch nicht weit fortgeschritten ist. Das bekannte Moorsche Gesetz, nachdem sich die Leistung von Computerchips alle zwei Jahre verdoppelt, und das seit 1970 ungebrochen ist, lässt erahnen, dass es heute für viele Unternehmen kaum vorstellbar ist, was in 15 Jahren mit Daten möglich sein wird - und vor allem: wie schnell bestehende Marktstrukturen und Geschäftsmodelle obsolet werden könnten. Mit anderen Worten: Es besteht unbedingter Handlungsbedarf in der deutschen Wirtschaft [3].