Now showing 1 - 6 of 6
  • Publication
    Supporting Visual Exploration of Iterative Job Scheduling
    ( 2022-03-30)
    Andrienko, Gennady
    ;
    Andrienko, Natalia
    ;
    Garcia, Jose Manuel Cordero
    ;
    ;
    Vouros, George A.
    We consider the general problem known as job shop scheduling, in which multiple jobs consist of sequential operations that need to be executed or served by appropriate machines having limited capacities. For example, train journeys (jobs) consist of moves and stops (operations) to be served by rail tracks and stations (machines). A schedule is an assignment of the job operations to machines and times where and when they will be executed. The developers of computational methods for job scheduling need tools enabling them to explore how their methods work. At a high level of generality, we define the system of pertinent exploration tasks and a combination of visualizations capable of supporting the tasks. We provide general descriptions of the purposes, contents, visual encoding, properties, and interactive facilities of the visualizations and illustrate them with images from an example implementation in air traffic management. We justify the design of the visualizations based on the tasks, principles of creating visualizations for pattern discovery, and scalability requirements. The outcomes of our research are sufficiently general to be of use in a variety of applications.
  • Publication
    Constructing Spaces and Times for Tactical Analysis in Football
    ( 2021)
    Andrienko, Gennady
    ;
    Andrienko, Natalia
    ;
    Anzer, Gabriel
    ;
    Bauer, Pascal
    ;
    Budziak, Guido
    ;
    ; ;
    Weber, Hendrik
    ;
    A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an approach that includes a combination of query techniques for flexible selection of episodes of situation development, a method for dynamic aggregation of data from selected groups of episodes, and a data structure for representing the aggregates that enables their exploration and use in further analysis. The aggregation, which is meant to abstract general movement patterns, involves construction of new time-homomorphic reference systems owing to iterative application of aggregation operators to a sequence of data selections. As similar patterns may occur at different spatial locations, we also propose constructing new spatial reference systems for aligning and matching movements irrespective of their absolute locations. The approach was tested in application to tracking data from two Bundesliga games of the 2018/2019 season. It enabled detection of interesting and meaningful general patterns of team behaviors in three classes of situations defined by football experts. The experts found the approach and the underlying concepts worth implementing in tools for football analysts.
  • Publication
    Constructing semantic interpretation of routine and anomalous mobility behaviors from big data
    ( 2015) ; ; ;
    Andrienko, Natalia
    ;
    Andrienko, Gennady
    Annually organized VAST Challenges provide a unique opportunity to analyze complex data with available ground truth. In 2014, one of the tasks was to interpret routine and anomalous patterns of human mobility based on big data: trajectories of cars and credit card transactions. We describe a scalable visual analytics approach to solving this problem. Repeatedly visited personal and public places were extracted from trajectories by finding spatial clusters of stop points. Temporal patterns of peoples presence in the places resulted from spatio-temporal aggregation of the data by the places and hourly intervals within the weekly cycle. Based on these patterns, we identified the meanings or purposes of the places: home, work, breakfast, lunch and dinner, etc. Meanings of some places could be refined using the credit card transaction data. By representing the place meanings as points on a 2D plane, we built an abstract semantic space and transformed the original trajectories to trajectories in the semantic space, i.e., performed semantic abstraction of the data. Spatio-temporal aggregation of the transformed trajectories into flows between the semantic places and subsequent clustering of time intervals by the similarity of the flow situations allowed us to reveal and analyze the routine movement behaviors. To detect anomalies, we (a) investigated the visits to the places with unknown meanings, and (b) looked for unusual presence times or visit durations at different semantic places. The analysis is scalable since all tools and methods can be applied to much larger data. Moreover, the semantic data abstraction can serve as a tool for protecting the personal privacy.
  • Publication
    Using Bluetooth to track mobility patterns: Depicting its potential based on various case studies
    ( 2013)
    Ellersiek, Timothy
    ;
    Andrienko, Gennady
    ;
    Andrienko, Natalia
    ;
    ; ;
    Müller, Marc
    During the past years the interest in the exploitation of mobility information has increased significantly. A growing number of companies and research institutions are interested in the analysis of mobility data with demand of a high level of spatial detail. Means of tracking persons in our environment can nowadays be fulfilled by utilizing several technologies, for example the Bluetooth technology, offering means to obtain movement data. This paper gives an overview of four case studies in the field of Bluetooth tracking which were conducted in order to provide helpful insights on movement aspects for decision makers in their specific microcosm. Aim is to analyse spatio-temporal validity of Bluetooth tracking, and in doing so, to describe the potential of Bluetooth in pedestrian mobility mining.
  • Publication
    Visual analytics for understanding spatial situations from episodic movement data
    ( 2012)
    Andrienko, Natalia
    ;
    Andrienko, Gennady
    ;
    ; ;
    Continuing advances in modern data acquisition techniques result in rapidly growing amounts of georeferenced data about moving objects and in emergence of new data types.We define episodic movement data as a new complex data type to be considered in the research fields relevant to data analysis. In episodic movement data, position measurements may be separated by large time gaps, in which the positions of the moving objects are unknown and cannot be reliably reconstructed. Many of the existing methods for movement analysis are designed for data with fine temporal resolution and cannot be applied to discontinuous trajectories. We present an approach utilising Visual Analytics methods to explore and understand the temporal variation of spatial situations derived from episodic movement data b y means of spatio-temporal aggregation. The situations are defined in terms of the presence of moving objects in different places and in terms of flows (collective movements) between the places. The approach, which combines interactive visual displays with clustering of the spatial situations, is presented by example of a real dataset collected by Bluetooth sensors.
  • Publication
    Analytical workflow of monitoring human mobility in big event settings using bluetooth
    ( 2011) ; ; ;
    Andrienko, Gennady
    ;
    Andrienko, Natalia
    In recent times, consumer research at major social events received significant interest by organizing companies. Understanding the movements and motivations of the customers enables new business strategies and is needed to minimize the risk of investment. The spatiotemporal complexity of major events poses high demands on survey and analytical methods. New technological advances in both event monitoring systems and evaluation methods of movement data provide new insights into the behavioral patterns of customers by preserving their privacy. In this paper we present a work that seeks to systematize the research process of design, collection, and analysis of visitor behavior in a mixed indoor-outdoor event setting using Bluetooth sensor technology. The defined workow is comprised of 5 steps and designed to answer heterogeneous business questions with respect to customer movement behavior in a single event context. Our approach is applied in a real-world business applicati on for a Formula 1 event.