Now showing 1 - 3 of 3
  • Publication
    Hybrid laser-arc welding of laser- and plasma-cut 20-mm-thick structural steels
    ( 2022)
    Üstündag, Ömer
    ;
    Bakir, Nasim
    ;
    ; ;
    It is already known that the laser beam welding (LBW) or hybrid laser-arc welding (HLAW) processes are sensitive to manufacturing tolerances such as gaps and misalignment of the edges, especially at welding of thick-walled steels due to its narrow beam diameter. Therefore, the joining parts preferably have to be milled. The study deals with the influence of the edge quality, the gap and the misalignment of edges on the weld seam quality of hybrid laser-arc welded 20-mm-thick structural steel plates which were prepared by laser and plasma cutting. Single-pass welds were conducted in butt joint configuration. An AC magnet was used as a contactless backing. It was positioned under the workpiece during the welding process to prevent sagging. The profile of the edges and the gap between the workpieces were measured before welding by a profile scanner or a digital camera, respectively. With a laser beam power of just 13.7 kW, the single-pass welds could be performed. A gap bridgeability up to 1 mm at laser-cut and 2 mm at plasma-cut samples could be reached respectively. Furthermore, a misalignment of the edges up to 2 mm could be welded in a single pass. The new findings may eliminate the need for cost and time-consuming preparation of the edges.
  • Publication
    Method for defect-free hybrid laser-arc welding of closed circumferential welds
    This paper presents investigation results of a process for defect-free hybrid laser arc welding (HLAW) of closed circumferential welds. The process aims to avoid weld imperfections in the overlap area of a HLAW circumferential weld. A process control strategy for closing the circumferential weld was developed to achieve a defect-free overlap region by controlling the solidification conditions at the end of the weld. The controlled heat flow is achieved by adjusting the parameters of both welding processes involved, the laser beam as well as gas metal arc welding (GMAW) process. Experimental investigations were carried out on 12 mm to 15 mm thick tube sections. The influence of process parameters such as the laser power ramp, the change in magnification scale and the defocusing of the laser beam on the solidification conditions at the end of the circumferential weld was investigated to find an optimum strategy for ramping out the process energy. Within the framework of the experimental studies, it was demonstrated that defocusing the laser beam in the range between 60 mm and 100 mm over a short run-out area of the weld of approximately 15 mm led to a significantly better weld formation in the overlap area. A favorable cup-shaped weld shape could be achieved without a tendency to crack. The laser optics with a motor-driven lens system made it possible to increase the laser beam diameter without changing the position of the GMAW arc relative to the component surface.
  • Publication
    Hybrid laser-arc welding of thick-walled ferromagnetic steels with electromagnetic weld pool support
    ( 2018)
    Üstündag, Ömer
    ;
    Fritzsche, André
    ;
    Avilov, Vjaceslav
    ;
    ;
    The hybrid laser-arc welding (HLAW) process provides many advantages over laser welding and arc welding alone, such as high welding speed, gap bridgeability, and deep penetration. The developments in hybrid laser-arc welding technology using modern high-power lasers allow single-pass welding of thick materials. This technology can be used for the heavy metal industries such as shipbuilding, power plant fabrication, and line-pipe manufacturing. The obvious problem for single-pass welding is the growth of the hydrostatic pressure with increasing thickness of materials leading to drop-out of molten metal. This phenomenon is aggravated at slow welding velocities because of increasing weld seam width followed by a decrease of Laplace pressure compensating the hydrostatic pressure. Therefore, weld pool support is necessary by welding of thick materials with slow welding velocities. The innovative electromagnetic weld pool support system is contactless and has been used successfully for laser beam welding of aluminum alloys and austenitic and ferromagnetic steels. The support system is based on generating Lorentz forces within the weld pool. These are produced by an oscillating magnetic field orientated perpendicular to the welding direction. The electromagnetic weld pool support facilitates a decrease in the welding speed without a sagging and drop-out of the melt thus eliminating the limitations of weldable material thickness.