Now showing 1 - 2 of 2
  • Publication
    Investigation of liquid metal embrittlement avoidance strategies for dual phase steels via electro-thermomechanical finite element simulation
    ( 2022-06) ;
    Böhne, Christoph
    ;
    ;
    Meschut, Gerson
    ;
    Modern advanced high-strength steel (AHSS) sheets used in automotive body construction are mostly zinc coated for corrosion resistance. The presence of zinc can cause cracking in steels due to liquid metal embrittlement (LME) during resistance spot welding (RSW). In combination with factors such as tensile strains, liquid zinc can lead to the formation of brittle, intergranular cracks in the weld and heat affected zone. While practical investigations to mitigate LME occurrence exist, the reason why a certain parameter might cause or prevent LME is often unknown. Numerical resistance spot welding simulation can visualize the underlying stresses, strains and temperatures during the welding process and investigate experimentally unmeasurable phenomena. In this work, a 3-dimensional electro-thermomechanical finite element approach is used to assess and investigate the critical parameters leading to LME occurrence. Experimentally observed crack sizes are correlated with the corresponding local strain rates and temperature exposure durations in the simulation. With this data, a map of LME occurrence over driving influence factors is drafted and discussed for effectiveness.