Now showing 1 - 10 of 15
No Thumbnail Available
Publication

Application of Hybrid Laser Arc Welding for Construction of LNG Tanks Made of Thick Cryogenic 9% Ni Steel Plates

2023-10-18 , Gook, Sergej , El-Batahgy, Abdel-Monem , Gumenyuk, Andrey , Biegler, Max , Rethmeier, Michael

Hybrid laser-arc welding (HLAW) was applied for butt welding of 14.5 mm thick plates of ferritic cryogenic steel X8Ni9 containing 9% Ni, which is used for manufacturing storage and transport facilities of liquefied natural gas (LNG). The weld seam formation and the achievable metallurgical and mechanical properties of the hybrid welds were investigated experimentally for two types of filler wire, an austenitic wire dissimilar to the base metal (BM) and an experimentally produced matching ferritic wire. Safe penetration and uniform distribution of the austenitic filler metal in the narrow hybrid weld could only be achieved in the upper, arc-dominated part of the weld. The pronounced heterogeneous distribution of the austenitic filler metal in the middle part and in the root area of the weld could not ensure sufficient notched impact toughness of the weld metal (WM). As a result, a decrease in the impact energy down to 17 ± 3 J was observed, which is below the acceptance level of ≥ 34 J for cryogenic applications. In contrast, the use of a matching ferritic filler wire resulted in satisfactory impact energy of the hybrid welds of up to 134 ± 52 J at the concerned cryogenic temperature of-196 °C. The obtained results contribute to an important and remarkable conversion in automated manufacturing of LNG facilities. In other words, the results will help to develop a new laser-based welding technology, where both quality and productivity are considered. The efficiency of the developed welding process has been demonstrated by manufacturing a prototype where a segment of the inner wall of large size LNG storage tank was constructed. In this concern, hybrid laser arc welding was conducted in both horizontal (2G) and vertical (3G) positions as a simulation to the actual onsite manufacturing. The prototype was fabricated twice where its quality was confirmed based on non-destructive and destructive examinations.

No Thumbnail Available
Publication

Process Setup and Boundaries of Wire Electron Beam Additive Manufacturing of High-Strength Aluminum Bronze

2023-08-08 , Raute, Maximilian Julius , Biegler, Max , Rethmeier, Michael

In recent years, in addition to the commonly known wire-based processes of Directed Energy Deposition using lasers, a process variant using the electron beam has also developed to industrial market maturity. The process variant offers particular potential for processing highly conductive, reflective or oxidation-prone materials. However, for industrial usage, there is a lack of comprehensive data on performance, limitations and possible applications. The present study bridges the gap using the example of the high-strength aluminum bronze CuAl8Ni6. Multi-stage test welds are used to determine the limitations of the process and to draw conclusions about the suitability of the parameters for additive manufacturing. For this purpose, optimal ranges for energy input, possible welding speeds and the scalability of the process were investigated. Finally, additive test specimens in the form of cylinders and walls are produced, and the hardness profile, microstructure and mechanical properties are investigated. It is found that the material CuAl8Ni6 can be well processed using wire electron beam additive manufacturing. The microstructure is similar to a cast structure, the hardness profile over the height of the specimens is constant, and the tensile strength and elongation at fracture values achieved the specification of the raw material.

No Thumbnail Available
Publication

On Welding of High-Strength Steels Using Laser Beam Welding and Resistance Spot Weld Bonding with Emphasis on Seam Leak Tightness

2023 , Schmolke, Tobias , Brunner-Schwer, Christian , Biegler, Max , Rethmeier, Michael , Meschut, Gerson

The design of most electric vehicles provides for the positioning of the heavy energy storage units in the underbody of the cars. In addition to crash safety, the battery housing has to meet high requirements for gas tightness. In order to test the use of high-strength steels for this sub-assembly, this paper examines welded joints utilizing resistance spot weld bonding and laser remote welding, with special regard to the gas tightness of the welds. For this purpose, the pressure difference test and helium sniffer leak detection are presented and applied. The combination of both leak test methods has proven ideal in experimental investigations. For laser remote welding, gas-tight seams can be achieved with an inter-sheet gap of 0.1 mm, even if occasionally leaking samples cannot be prevented. Resistance spot welding suits gas-tight joining with both one- and two-component adhesives. Against the background of leak tightness, process fluctuations that lead to weld spatter and defects in the adhesive layer must be prevented with high priority.

No Thumbnail Available
Publication

Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals

2022-04-14 , Marko, Angelina , Bähring, Stefan , Raute, Maximilian Julius , Biegler, Max , Rethmeier, Michael

The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries.

No Thumbnail Available
Publication

The Identification of a New Liquid Metal Embrittlement (LME) Type in Resistance Spot Welding of Advanced High-Strength Steels on Reduced Flange Widths

2023-10-16 , Yang, Keke , Meschut, Gerson , Seitz, Georg , Biegler, Max , Rethmeier, Michael

Liquid metal embrittlement (LME) cracking is a phenomenon observed during resistance spot welding (RSW) of zinc-coated advanced high-strength steels (AHSS) in automotive manufacturing. In this study, severe cracks are observed at the edge of the sheet under reduced flange widths. These cracks, traversing the AHSS sheet, culminate at the edge with a width of approximately 1.2 mm. Through combined numerical and experimental investigations, and material testing, these cracks are identified and validated as a new type of LME crack. The mechanism behind this crack formation is attributed to unique geometric conditions that, when compared to center welding, amplify radial material flow by ninefold to 0.87 mm. The resultant tangential tensile stresses approximate 760 MPa, which exceed the yield strength of the examined advanced high-strength steel (AHSS) under heightened temperature conditions, and when combined with liquid zinc, promote the formation of this new type of LME crack.

No Thumbnail Available
Publication

Feasibility study of joining of carbon fibre-reinforced polymer composites and aluminium alloys by electron beam welding for use in lightweight construction

2023-05-12 , Yalcinyüz, Behiye Aybike , Brunner-Schwer, Christian , Biegler, Max , Rethmeier, Michael

In recent years, new solutions to reduce the weight of components used in the automotive, railway, and aircraft industries have been researched. Carbon Fibre Composites (CFC) have been used to replace metals in products requiring lightweight construction, such as aircraft or high-performance vehicles due to their exceptional mechanical strength. However, the use of CFCs is limited by the reason of their poor thermal conductivity, particularly on components requiring effective dissipation of power losses. To respond to the requirements, the idea of the material combination of metals and polymer-based composites is proposed. In this study, electron beam welding is used for the joining of aluminium alloys and polymer-based composites. Within the experiments, the relevant process parameters such as beam current, welding speed, and heat input have been optimized to achieve the welding of the aluminium alloys. Then, the joining of aluminium alloys and carbon fibre-reinforced polymer composites has been investigated through the optimized welding process parameters for aluminium alloys. Conclusions are drawn regarding the carbon-fibre reinforced polymer composites (PA6-CF) and aluminium alloys (AlMg3) being joinable through electron beams.

No Thumbnail Available
Publication

Result quality evaluation of Directed Energy Deposition Additive Manufacturing simulations with progressive simplification of transient heat-source motion

2022-09-05 , Biegler, Max , Elsner, Beatrix A.M. , Neubauer, Ingo , Lemke, Josefine , Rethmeier, Michael

Directed Energy Deposition (DED) additive manufacturing has recently been adopted in the industry for the build-up of structural components with weld lengths up to kilometers. As with all welding processes, DED suffers from thermal distortion, causing loss of dimensional accuracy and risk of cracking. Currently, process optimization with objective to minimize distortion requires expensive experimental trial-and-error. With numerical simulation of the DED process, this distortion compensation can be performed virtually, significantly reducing experimental trials. Although such approaches are generally available, their widespread adoption is currently being hampered by long computational times for large builds. This work presents a novel approach to reduce the calculation time by a simplification of the transient heat-source motion. This approach is assessed in terms of result accuracy for an industrial-scale component by progressively reducing the resolution of the heat-source motion. Calculation times as well as distortions in comparison to experimental trials are investigated.

No Thumbnail Available
Publication

Künstliche Neuronale Netze zur Qualitätsprognose von Funktional Gradierten Materialien im laserbasierten Directed Energy Deposition

2023-09-25 , Marquardt, Raphael , Bähring, Stefan , Biegler, Max , Rethmeier, Michael

Durch pulverbasiertes Directed-Energy Deposition lassen sich Gradierungen fertigen, um diskrete Materialübergänge zu vermeiden und die Lebensdauer von Hartschichten zu erhöhen. Die Kombination aus Stahl als Basiswerkstoff und einer verschleiß- und korrosionsbeständigen Co-Cr Legierung verspricht durch Vermeiden von Spannungskonzentrationen das Verhindern von Abplatzungen und Rissen in der Schutzschicht. Um die Qualität des gefertigten Bauteils zu beurteilen, liegen für solche Funktional Gradierten Materialien (FGM) wenig Erkenntnisse vor. Daher wird im Rahmen dieser Studie eine Methodik erarbeitet, um die relative Dichte eines Funktional Gradierten Materials auf Stahl und Co-Cr Basis mittels Maschinendaten zu bestimmen. Anschließend wird unter Einsatz eines künstlichen neuronalen Netzes anhand von Sensordaten die relative Dichte vorhergesagt. Das trainierte Netz erreicht eine Vorhersagegenauigkeiten von 99,83%. Abschließend wird eine Anwendung anhand von einem Demonstrator gezeigt.

No Thumbnail Available
Publication

A life cycle assessment of joining processes in the automotive industry, illustrated by the example of an EV battery case

2023 , Brunner-Schwer, Christian , Lemke, Josefine , Biegler, Max , Schmolke, Tobias , Spohr, Sebastian , Meschut, Gerson , Eckstein, Lutz , Rethmeier, Michael

Current ecological, economic and social changes are leading to a change in development, design and production of future vehicles. In this context, it is the stated goal of many manufacturers to advance the development of an environmentally friendly vehicle and climate-neutral production throughout the entire supply chain. This study presents a comparative life cycle assessment of the joining processes laser beam welding, laser brazing and resistance spot welding. For this purpose, an approach tailored to welding processes is presented and applied to the example of a battery case for electric vehicles. For the welding process under consideration, the main influences on the resulting environmental impact categories are evaluated and compared. The requirements for ecologically efficient welding processes are discussed and outlined. The results show that particularly the materials involved, such as the consumption of the filler material, have the greatest environmental impact and thus offer the greatest potential for savings.

No Thumbnail Available
Publication

Investigation of liquid metal embrittlement avoidance strategies for dual phase steels via electro-thermomechanical finite element simulation

2022-06 , Biegler, Max , Böhne, Christoph , Seitz, Georg , Meschut, Gerson , Rethmeier, Michael

Modern advanced high-strength steel (AHSS) sheets used in automotive body construction are mostly zinc coated for corrosion resistance. The presence of zinc can cause cracking in steels due to liquid metal embrittlement (LME) during resistance spot welding (RSW). In combination with factors such as tensile strains, liquid zinc can lead to the formation of brittle, intergranular cracks in the weld and heat affected zone. While practical investigations to mitigate LME occurrence exist, the reason why a certain parameter might cause or prevent LME is often unknown. Numerical resistance spot welding simulation can visualize the underlying stresses, strains and temperatures during the welding process and investigate experimentally unmeasurable phenomena. In this work, a 3-dimensional electro-thermomechanical finite element approach is used to assess and investigate the critical parameters leading to LME occurrence. Experimentally observed crack sizes are correlated with the corresponding local strain rates and temperature exposure durations in the simulation. With this data, a map of LME occurrence over driving influence factors is drafted and discussed for effectiveness.