Now showing 1 - 3 of 3
  • Publication
    Künstliche Neuronale Netze zur Qualitätsprognose von Funktional Gradierten Materialien im laserbasierten Directed Energy Deposition
    Durch pulverbasiertes Directed-Energy Deposition lassen sich Gradierungen fertigen, um diskrete Materialübergänge zu vermeiden und die Lebensdauer von Hartschichten zu erhöhen. Die Kombination aus Stahl als Basiswerkstoff und einer verschleiß- und korrosionsbeständigen Co-Cr Legierung verspricht durch Vermeiden von Spannungskonzentrationen das Verhindern von Abplatzungen und Rissen in der Schutzschicht. Um die Qualität des gefertigten Bauteils zu beurteilen, liegen für solche Funktional Gradierten Materialien (FGM) wenig Erkenntnisse vor. Daher wird im Rahmen dieser Studie eine Methodik erarbeitet, um die relative Dichte eines Funktional Gradierten Materials auf Stahl und Co-Cr Basis mittels Maschinendaten zu bestimmen. Anschließend wird unter Einsatz eines künstlichen neuronalen Netzes anhand von Sensordaten die relative Dichte vorhergesagt. Das trainierte Netz erreicht eine Vorhersagegenauigkeiten von 99,83%. Abschließend wird eine Anwendung anhand von einem Demonstrator gezeigt.
  • Publication
    Learning Demonstrator for Anomaly Detection in Distributed Energy Generation
    ( 2022-04-07)
    Pelchen, Timo
    ;
    Thiele, Gregor
    ;
    ;
    Radke, Marcel
    ;
    Schade, David
    ;
    Machine learning based anomaly detection methods on process data can be used to secure critical infrastructure. The design and installation of these methods require detailed understanding of both the facilities and the machine learning methods. Therefore, they are mostly incomprehensible for non-experts and thus acting as a barrier hindering the fast spread of such technologies. This article presents the systematic development of a demonstrator which enables presentations of anomaly detection on the example of a simulated wind farm. The specially designed user-interface allows a comprehensive experience. This article documents the use of the demonstrator for experts experienced in energy systems which are interested in the application of machine learning algorithms.
  • Publication
    Skalierbare Herstellung von ATMPs
    Die Entwicklung von Arzneimitteln für neuartige Therapien (ATMPs; Advanced Therapy Medicinal Products) schreitet schnell voran. Erste Produkte haben bereits die Marktzulassung erhalten und sind kommerziell erhältlich. Ihre Produktion ist jedoch von komplexen manuellen Abläufen, hochspezialisierten Geräten und den damit verbundenen hohen Produktionskosten geprägt. Aufgrund der Neuartigkeit und der hohen Komplexität bei der Produktion kann das volle klinische Potential von ATMPs in Zukunft unter den bestehenden Produktionsbedingungen nicht ausgeschöpft werden. Darüber hinaus nehmen die am Markt zugelassenen Produkte und die klinischen Anwendungsgebiete von ATMPs stetig zu, was langfristig nicht nur zu einem Engpass in der Produktion, sondern auch zu einer hohen finanziellen Belastung des Gesundheitssystems führen wird. Um die Herstellkosten von ATMPs zu senken und sie vielen Patientinnen und Patienten zur Verfügung stellen zu können, sind neue Konzepte entlang der gesamten Wertschöpfungskette erforderlich. Dafür muss die Produktion insbesondere stärker automatisiert und digitalisiert werden. Unterschiedliche Konzepte sind hier vielversprechend für eine vollautomatisierte Produktion, im Sinne einer vollintegrierten Automatisierung oder eines modularen Aufbaus der Produktionsumgebung. Die Implementierung dieser Konzepte setzt neue Entwicklungen voraus, von der Entnahme der Zellen bei der Spenderin oder beim Spender über die Produktionstechnologien an sich bis hin zur finalen Formulierung und Abfüllung des Produkts. Neben Änderungen im Bereich der Hardware werden auch neue Softwarelösungen notwendig, beispielsweise zur Planung und Auswahl geeigneter Produktionsszenarien. Auch für die eigentliche Produktion von ATMPs und die damit verbundenen Daten müssen zukünftig neue Technologien, wie bspw. integrierte Prozesskontrollen, die Prozessbegleitung mittels Digitalem Zwilling oder die Analyse sowie Prozesssteuerung mittels Künstlicher Intelligenz (KI) berücksichtigt werden, um das volle Automatisierungspotential ausschöpfen zu können.