Now showing 1 - 10 of 770
  • Publication
    Acoustic emission-based process monitoring in the milling of carbon fibre-reinforced plastics
    ( 2022)
    Uhlmann, E.
    ;
    Holznagel, Tobias
    Milling of fibre-reinforced plastics is a challenging task. The highly abrasive fibres lead to high tool wear and coating failures, which cause increasing process forces and temperatures. Machining with a worn tool, in turn, can result in unwanted workpiece damages such as delamination or fibre protrusion. Reliable monitoring of the process must therefore be able to detect damages to the milling tool and the workpiece alike. The presented process monitoring approach measures the acoustic emission generated by the milling tool cutting edge entering the workpiece with a sensor attached to the tool holder. Specific acoustic emission frequency spectra and waveforms are emitted in the cutting zone for different tool wear states. Coating failures as well as other acoustic emission events due to workpiece damages can be robustly detected and distinguished by feature extraction and signal processing as well. The developed setup, the monitoring parameterisation techniques and signal processing algorithms as well as experimental and monitoring results are presented and discussed in this paper.
  • Publication
    In situ microstructure analysis of Inconel 625 during laser powder bed fusion
    ( 2022)
    Schmeiser, F.
    ;
    Krohmer, E.
    ;
    Wagner, C.
    ;
    Schell, N.
    ;
    Uhlmann, E.
    ;
    Reimers, W.
    Laser powder bed fusion is an additive manufacturing process that employs highly focused laser radiation for selective melting of a metal powder bed. This process entails a complex heat flow and thermal management that results in characteristic, often highly textured microstructures, which lead to mechanical anisotropy. In this study, high-energy X-ray diffraction experiments were carried out to illuminate the formation and evolution of microstructural features during LPBF. The nickel-base alloy Inconel 625 was used for in situ experiments using a custom LPBF system designed for these investigations. The diffraction patterns yielded results regarding texture, lattice defects, recrystallization, and chemical segregation. A combination of high laser power and scanning speed results in a strong preferred crystallographic orientation, while low laser power and scanning speed showed no clear texture. The observation of a constant gauge volume revealed solid-state texture changes without remelting. They were related to in situ recrystallization processes caused by the repeated laser scanning. After recrystallization, the formation and growth of segregations were deduced from an increasing diffraction peak asymmetry and confirmed by ex situ scanning transmission electron microscopy.
  • Publication
    Numerical investigation into cleanability of support structures produced by powder bed fusion technology
    ( 2022)
    Campana, G.
    ;
    Uhlmann, E.
    ;
    Mele, M.
    ;
    Raffaelli, L.
    ;
    Bergmann, A.
    ;
    Kochan, J.
    ;
    Polte, J.
    Purpose: Support structures used in laser powder bed fusion are often difficult to clean from unsintered powder at the end of the process. This issue can be significantly reduced through a proper design of these auxiliary structures. This paper aims to investigate preliminary the airflow within differently oriented support structures and to provide design guidelines to enhance their cleanability, especially the depowdering of them. Design/methodology/approach: This study investigates the cleanability of support structures in powder bed fusion technology. Digital models of cleaning operations were designed through computer-aided engineering systems. Simulations of the airflow running into the powder entrapped within the thin walls of auxiliary supports were implemented by computational fluid dynamics. This approach was applied to a set of randomly generated geometrical configurations to determine the air turbulence intensity depending on their design. Findings: The resul ts, which are based on the assumption that a relationship exists between turbulence and powder removal effectiveness, demonstrated that the maximum cleanability is obtainable through specific relative rotations between consecutive support structures. Furthermore, it was possible to highlight the considerable influence of the auxiliary structures next to the fluid inlet. These relevant findings establish optimal design rules for the cleanability of parts manufactured by powder bed fusion processes. Originality/value: This study presents a preliminary investigation into the cleanability of support structures in laser powder bed fusion, which has not been addressed by previous literature. The results allow for a better understanding of the fluid dynamics during cleaning operations. New guidelines to enhance the cleanability of support structures are provided based on the results of simulations.
  • Publication
    Influence of superimposed low frequency oscillations on single-pass honing of long-chipping steel
    ( 2022)
    Uhlmann, E.
    ;
    Rozek, André
    Single-pass honing is used as a finishing process to meet high demands regarding form and dimensional accuracy of drilled bores. The disadvantages of single-pass honing compared to the conventional long-stroke honing are high process forces and torques as well as an increased risk of chip space clogging of the abrasive stones. A significant reduction in process forces and torques can be achieved by superimposing the axial movement with oscillations. In this work the kinematic basics of different oscillation parameters and their effects on single-pass honing of long-chipping steel are analyzed. It can be concluded that by superimposing low frequency oscillations in single-pass honing, the process forces and torques as well as the specific energy consumption can be reduced significantly without a decline in surface quality and form accuracy.
  • Publication
    Optimizing the sharpening process of hybrid-bonded diamond grinding wheels by means of a process model
    ( 2022)
    Uhlmann, E.
    ;
    Muthulingam, A.
    The grinding wheel topography influences the cutting performance and thus the economic efficiency of a grinding process. In contrary to conventional grinding wheels, super abrasive grinding wheels should undergo an additional sharpening process after the initial profiling process to obtain a suitable microstructure of the grinding wheel. Due to the lack of scientific knowledge, the sharpening process is mostly performed manually in industrial practice. A CNC-controlled sharpening process can not only improve the reproducibility of grinding processes but also decrease the secondary processing time and thereby increase the economic efficiency significantly. To optimize the sharpening process, experimental investigations were carried out to identify the significant sharpening parameters influencing the grinding wheel topography. The sharpening block width lSb, the grain size of the sharpening block dkSb and the area-related material removal in sharpening VâSb were identi fied as the most significant parameters. Additional experiments were performed to further quantify the influence of the significant sharpening parameters. Based on that, a process model was developed to predict the required sharpening parameters for certain target topographies. By using the process model, constant work results and improved process reliability can be obtained.
  • Publication
    Residual stress assessment during cutting tool lifetime of CVD-diamond coated indexable inserts
    ( 2022)
    Uhlmann, E.
    ;
    Hinzmann, Daniel
    Insufficient coating adhesion limits reproducibility regarding tool lifetime as well as workpiece quality during the application of CVD-diamond coated cutting tools. Depending on the combination of tungsten carbide substrate material, coating thickness as well as coating morphology, individual residual stress conditions exist within CVD-diamond coated cutting tool specifications. The application of these tools is accompanied by coating delamination as primary cutting tool failure. The tool lifetime of the respective cutting tool composition depends on the corresponding residual stress condition until crack development within the CVD-diamond coating initiates tool failure. During external cylindrical turning of hypereutectic aluminium silicon alloy AlSi17Cu4Mg-T6 the residual stress condition of a CVD-diamond coated cutting tool is assessed along the cutting edge, the rake face as well as flank face throughout the respective tool lifetime. Consequently, the progression of the residual stress condition until cutting tool failure regarding coating delamination is observed. During the tool lifetime of the investigated CVD-diamond cutting tools, compressive residual stress ∆σR,c shifts to tensile residual stress ∆σR,t underneath the cutting edge corner. The approximated residual stress difference of ∆σR ≈ 5 GPa indicates stress peak relaxation processes, such as crack initiation, within the CVD-diamond coating.
  • Publication
    Modeling of the wet immersed tumbling process with the Discrete Element Method (DEM)
    ( 2021)
    Uhlmann, E.
    ;
    Fürstenau, J.-P.
    ;
    Kuche, Y.
    ;
    Yabroudi, S.
    ;
    Polte, J.
    ;
    Polte, M.
    Immersed tumbling is an industrially established process for finishing of components made of metal, ceramic or plastic. In this process, the components are completely surrounded by a wet, abrasive medium, which allows burrs to be removed and surfaces to be polished. In order to gain specific insights into the influence and flow properties of the abrasive media used in this process, numerical approaches using the Discrete Element Method (DEM) with the Rocky DEM software are presented within these investigations. A complete process simulation could be realised by means of a digital machine tool. The immersed tumbling process with cone-shaped polymer abrasive media is implemented by use of a liquid bridge model. The results were validated by experiments with an industrially used immersed tumbling machine tool and for the first time allow sound statements about the contact conditions and interactions of the abrasive media with the workpiece.
  • Publication
    Measurement and Modeling of Contact Forces during Robot-guided Drag Finishing
    ( 2021)
    Uhlmann, E.
    ;
    Kopp, M.
    Robot-guided drag finishing is a free abrasive grinding operation that is used for polishing and deburring of workpieces with complex shaped geometries. The workpiece is attached to a robot and moved through a bulk of abrasive particles. The motion of abrasive particles during contact with the workpiece is the basis of the material removal mechanisms. To investigate the motion of abrasive particles during contact, a force measurement system was used to determine contact forces. The experimental setup was replicated in a numerical simulation based on the discrete element method (DEM). Based on the comparison of experimental and simulative results the qualitative validity of the DEM model was concluded. With the presented DEM model, the characteristic particle behavior during contact with the workpiece can be modeled which allows the prediction of resulting processing marks. Consequently, the DEM model can be used to design free abrasive grinding operations without using the time and cost intensive trial and error approach.
  • Publication
    Mit dem Wasserabrasivstrahl in eine neue Dimension
    ( 2021)
    Reder, W.
    ;
    Uhlmann, E.
    ;
    Anders, S.
  • Publication
    Advances in Modeling of the Kerf Formation considering the Primary and Deflection Jets for the Abrasive Water Jet Technology
    ( 2021)
    Uhlmann, E.
    ;
    Kruggel-Emden, H.
    ;
    Männel, C.
    ;
    Barth, E.
    ;
    Markauskas, D.
    Processing of difficult to machine materials is a promising application for abrasive water jet kerf cutting and milling. However, due to the large number of interactions of an energy-bound cutting process, a precise prediction of the material removal is crucial for its application. Based on an analytical approach, a material removal simulation model is introduced considering the primary and deflecting jet impacts to rapidly predict various cutting situations. The model describes fundamental cutting mechanisms considering the water jet's material removal rate and is calibrated for titanium aluminides. The model allows for a comprehensive kerf prediction and thus potentially accelerates the process design improving the productivity and quality for abrasive water jet kerf cutting and milling.