Now showing 1 - 8 of 8
  • Publication
    Haptic Interaction in Virtual Reality Environments for Manual Assembly Validation
    ( 2020)
    Kind, Simon
    ;
    ;
    Kießling, Nora
    ;
    Schmitz, Michael
    ;
    Stark, Rainer
    Based on an increased level of product complexity in product development processes new technologies and validation approaches are researched and applied in industry to validate assembly processes. Especially technologies that are focusing on Mixed or Virtual Reality environments are getting very popular in the field of assembly validation, because of a huge potential to reduce the necessary number of physical prototypes. Therefore costs and time within product integration phase can be saved. These technologies can provide a high level of immersion for pick-and place or assembly tasks and allow a scale 1:1 interaction with the future product or production system. Still plenty of limitations for a complete substitution of physical prototypes exist due to the lack of physical and haptic behavior of these virtual prototypes. Within this paper, a development method and applications for haptic interaction with force-feedback devices for assembly validation is presented. Focusing especially on the development process of a mixed prototype with virtual and physical elements, so called hybrid prototypes, a hard- and software framework is presented. Nowadays virtual assembly methods for Virtual Reality and computer haptics are still based on a high level of expertise in providing technology and testbeds. To keep a high level of flexibility regarding virtual validation models, easily applicable procedures for modelling, im-/exporting and configuration of the prototype are needed for a virtual assembly use case. In this paper, a new and connected processing pipeline is presented that describes and guides a non-expert user from CAD environment to the implementation and configuration of prototypes for haptic interaction.
  • Publication
    Smart hybrid prototyping in manual automotive assembly validation
    ( 2020)
    Wolf, Bernhard
    ;
    Kind, Simon
    ;
    Stark, Rainer
    Smart Hybrid Prototyping (SHP) describes a method for early multimodal design testing with the help of mixed reality technologies. As required by past problem specific research results in manufacturing engineering, this innovative multidisciplinary concept has recently been transferred towards manual assembly validations. By describing a development process for SHP in the assembly context, this work contributes to a future integration in industrial research and process design workflows. Successfully implemented use cases in the field of automotive assembly process validation are presented. Latter demonstrate various complexities of the prototype systems composed by virtual and physical model characteristics.
  • Publication
    Anwendungsfälle
    ( 2018)
    Kind, Simon
    ;
    Rehfeld, Ingolf
    ;
    ; ;
    Kirsch, Lukas
  • Publication
  • Publication
    Hybrid Prototype-in-the-Loop
    ( 2018)
    Buchholz, Christian
    ;
    Kind, Simon
    ;
    Blume, Claas
    ;
    Enin, Alexey
    ;
    Stark, Rainer
    In der Phase der früheren Anlagen- und Prozessabsicherung zeichnet sich ein Bedarf nach neuen Absicherungswerkzeugen für eine integrierte Betrachtung von Anlagenverhalten und Mensch-Maschinen-Kollaboration ab. Durch die Kopplung von virtuellen 3D-Modellen des Layouts, deren Verhaltensmodellen sowie mechatronischen Elementen werden mit dem Hybrid Prototype-in-the-Loop (HPiL)-Ansatzes das frühzeitige Absichern und Evaluieren von Montageprozessen ermöglicht. Im Rahmen einer Studie werden die Vor- sowie Nachteile des Ansatzes kritisch beleuchtet.
  • Publication
    IT-Systemarchitektur
    ( 2018) ;
    Kirsch, Lucas
    ;
    Kind, Simon
    ;
    Becker, Waldemar
    ;
    Könnecke, Konstantin
    ;
    Zuchold, Jörg-Uwe
    Die digitale Transformation ist eines der aktuell bestimmenden Themen der Industrie. Mit Industrie 4.0 wurde zunächst ein Förder- und Innovationsschwerpunkt eröffnet, der als Wegbereiter der digitalen Transformation in Deutschland und darüber hinaus seine Wirksamkeit entfaltete. Das Leitbild der Industrie 4.0 adressiert dabei eine Prozess- und Technologiefähigkeit, die stark von der Anwendung von Informations- und Kommunikationstechnologien sowie Software an sich im Umfeld der Produktion abhängt. Sie ist Ausdruck der Tatsache, dass der Anteil der digitalen Wertschöpfung in der Produktentwicklung, Herstellung und im Dienstleistungsprozess signifikant groß ist und weiterhin ansteigt. Wesentliche Innovationen sind dem Gebiet der digitalen Wertschöpfung zuzuordnen: Serviceorientierte Geschäftsmodelle und datengetriebene Leistungsangebote verzahnen mit cyberphysischen Systemen zu Smarten Produkten, die im Kern auf kommunikationsfähiger Mechatronik beruhen. Auch im Anlagenbau ist die digitale Transformation stark zu spüren wie Studien des VDMA zur Digitalisierung der Branche und dem Wandel der Berufsbilder und Kompetenzen zeigen.
  • Publication
    SMART Engineering im Kontext Indsutrie 4.0: Baukastensysteme für die erlebbare Absicherung von Montageanlagen
    ( 2016)
    Kind, Simon
    ;
    Exner, Konrad
    ;
    Stark, Rainer
    ;
    Neumeyer, Sebastian
  • Publication
    Virtual prototyping and validation of CPPS within a new software framework
    ( 2016)
    Neumeyer, Sebastian
    ;
    Exner, Konrad
    ;
    Kind, Simon
    ;
    Hayka, Haygazun
    ;
    Stark, Rainer
    As a result of the growing demand for highly customized and individual products, companies need to enable flexible and intelligent manufacturing systems. Such new production systems, so called ""Cyber Physical Productions Systems"" (CPPS) aim the vision of interlinked and autonomous production. The research project VIB-SHP envisions controller validation of manufacturing system covering aspects of asynchronous communicating, intelligent and autonomous acting production equipment and a service based production IT. To enable manufacturing system designers to validate CPPS, a software framework for virtual prototyping has been developed. A multi-disciplinary construction kit integrates discipline specific models and manages them in a PLM solution. The usage of the construction kit enables manufacturing designers to apply virtual technologies and ease the integration in the production-IT. The presented approach resolves the sequential design process for the development of mechanical, electric and software elements and ensures the consistency of these models. With the help of a BOM- and signal-based alignment of the discipline specific models in an integrated mechatronic product model, the communication of design status and changes is improved. The re-use of already specified and designed modules enable quick behavior modeling, code evaluation as well as tangible user interaction with the virtualized assembly system.