Now showing 1 - 10 of 13
  • Publication
    Characterization of Ti-6Al-4V Fabricated by Multilayer Laser Powder-Based Directed Energy Deposition
    ( 2022)
    Ávila Calderón, Luis Alexander
    ;
    Graf, Benjamin
    ;
    Rehmer, Birgit
    ;
    Petrat, Torsten
    ;
    Skrotzki, Birgit
    ;
    Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti-6Al-4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED-L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 C.
  • Publication
    Additive manufacturing of precision cemented carbide parts
    ( 2021) ; ;
    Lahoda, Christian
    ;
    Hocke, Toni
    ;
    Cemented carbide parts are commonly used as wear resistance components in a broad range of industry, e.g. for forming, mould making and matrices. At state of the art the machining of precision cemented carbide components by milling is strongly limited due to excessive tool wear and long machining times. Promising approaches for precision machining of cemented carbide components are dedicated cutting tool coatings, new cutting materials like binderless polycrystalline diamond and ultrasonic-assisted machining. Nevertheless, for all these approaches the components need to be machined of monolithic materials. The new approach addresses an innovative manufacturing process chain composed of near net shape Additive Manufacturing followed by a precision finishing process. Within this investigations for the manufacturing of precision cemented carbide parts, cemented carbide with a cobalt content of 17 % and a grain size in a range of 23 µm ⤠gs ⤠40 µm were used. As Addit ive Manufacturing technology laser powder bed fusion was used. Diamond slide burnishing and immersed tumbling were investigated as finishing technologies. Based on the investigations, a dedicated process chain for the manufacturing of precision cemented carbide parts could be realised. The findings show that the developed process chain composed of near net shape Additive Manufacturing and the finishing process diamond slide burnishing enables the manufacturing of precision cemented carbide parts with a geometrical accuracy of ag ⤠10 µm. Due to the finishing process the initial surface roughness after Additive Manufacturing could reduce by Ra = 89 %.
  • Publication
    Effects on part density for a highly productive manufacturing of WC-Co via laser powder bed fusion
    ( 2021) ; ;
    Gordei, Anzhelika
    ;
    Kersting, Robert
    ;
    The additive manufacturing of parts made from difficult-to-weld materials through the usage of preheating temperatures of up to Î0 ⤠500 °C is enabled by newest L-PBF machine tools, such as the RenAM 500Q HT from the company RENISHAW PLC, Wottun-under-Edge, UK. This work aims to delevop processing parameters for the dense and crack-free manufacturing of tungsten-carbide cobalt (WC-Co) via this off-the-shelf machine tool. Therefore the laserpower and scanning speed were varied between 80 W ⤠PL ⤠350 W and 140 mm/s ⤠vS ⤠650 mm/s respectively. Furthermore the influence of a continuous and pulsed laser mode was analysed. A focus was set on the identification of parameters that enable a highly productive manufacturing while maintaining a high part density. A parameter set for relative density rel. > 94 % and a buildup rate v = 0.59 mm3/s was developed.
  • Publication
    Application of additive manufactured tungsten carbide-cobalt electrodes with interior flushing channels in S-EDM
    ( 2020) ; ; ;
    Yabroudi, Sami
    ;
    ;
    Bergmann, André
    Application fields of electrical discharge machining (EDM) are limited due to given process conditions. Manufacturing of parts with high aspect ratios and the application of multi-axis machining are limited due to process instabilities caused by removed particles. A promising approach to improve EDM process conditions, especially in sinking EDM (S-EDM), is the utilization of flushing channels in the tool electrode. However, with increasing complexity of the tool electrode geometry and the local integration of these flushing channels, conventional tool electrode manufacturing by cutting is limited. In contrast to that, the machining process selective laser melting (SLM) does not have such limitations. The appropriate integration of flushing channels, even for complex electrode geometries, improves process conditions during EDM in a variety of applications. This leads to a higher material removal rate and reduced tool wear compared to machining without flushing. Additionally, the number of required tool electrodes can be reduced, as SLM enables an efficient integration and miniaturization of all features in a single electrode. Because of its wear resistance and stability, tungsten carbide is an ideal tool electrode material, which is commonly applied in drilling EDM. After identifying suitable process parameters for roughing EDM with additively manufactured tungsten carbide cobalt tool electrodes, different forms of flushing channels were analysed in order to establish a fast process with minimum tool electrode wear. The results concerning material removal rate and the relative tool wear could be improved by applying internal flushing, though the tool wear stayed at a worse level compared to conventional tool electrode materials.
  • Publication
    Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition
    ( 2019)
    Petrat, Torsten
    ;
    ;
    Graf, Benjamin
    ;
    The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be considered, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20×20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow must be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties.
  • Publication
    Use of Digital Twins in Additive Manufacturing Development and Production
    ( 2019)
    Bergmann, André
    ;
    The megatrend of the digitization of the industry is picking up speed. Today, the digital twin is an important component in the strategic positioning of a manufacturing company. The Gartner Report predicts that more than 50% of large industrial companies will be using the digital twin and that the effectiveness of the companies can be increased by up to 10% by 2021. For this, it is necessary on the one hand that the products are equipped with sensors, in order to be able to provide the data for the digital twin. On the other hand, it is also necessary to be capable to evaluate the data unambiguously with regard to the products and to be able to initiate appropriate measures to control them. In addition, insights can be gained into the improvement of subsequent product generations and their production. The virtual representation of the product over its lifecycle requires a coupling with the real environment, in which lifecycle data are recorded via sensory systems and continuously imported into the virtual environment. Thus, the information and actual properties in the digital twin are mapped to the real conditions and the product condition in a dynamic data model. For this, it is necessary to integrate the information into the data systems of the product development and manufacturing processes. Based on this data, the behavior can be virtually tested, analyzed and predicted before actual production and use. This enables the engineer and manufacturer to further develop the product at reduced costs as early as the design phase. The virtual validation is significantly extended by the collected database in the digital twin. For companies, this means a reduction of costs by reducing material and time expenditures as well as process times - for example, with increased utilization time. On the basis of this study, a product example will be used to show which framework conditions are necessary for the use of the digital twin and which effects can be achieved in product development. It is also estimated to what extent the quality of the product and the process can be improved. In the area of additive manufacturing, for example, the question arises how quality data can be used either to control the machine parameters of the printing process in a targeted manner (feedback-to-planning) so that the desired product quality is achieved, or to adapt the product models before manufacturing (feedback-to-engineering) so that the desired product quality can be produced with existing parameters. The data alone is of little use to the companies. In addition to methodological and organizational issues, it is also necessary at the technological level to prepare the data for the various lifecycle phases of the product development process. This is where automated data evaluation in the form of AI comes in. Algorithms allow data evaluation by identifying patterns and deviations and consequently interpreting them for feedback-to-planning and feedback-to-engineering.
  • Publication
    Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718
    ( 2019)
    Jokisch, Torsten
    ;
    Marko, Angelina
    ;
    ;
    Üstündag, Ömer
    ;
    ;
    The advantage of selective laser melting (SLM) is its high accuracy and geometrical flexibility. Because the maximum size of the components is limited by the process chamber, possibilities must be found to combine several parts manufactured by SLM. An application where this is necessary, is, for example, the components of gas turbines, such as burners or oil return pipes, and inserts, which can be joined by circumferential welds. However, only a few investigations to date have been carried out for the welding of components produced by SLM. The object of this paper is, therefore, to investigate the feasibility of laser beam welding for joining SLM tube connections made of nickel-based alloys. For this purpose, SLM-manufactured Inconel 625 and Inconel 718 tubes were welded with a Yb:YAG disk laser and subsequently examined for residual stresses and defects. The results showed that the welds had no significant influence on the residual stresses. A good weld quality could be achieved in the seam circumference. However, pores and pore nests were found in the final overlap area, which meant that no continuous good welding quality could be accomplished. Pore formation was presumably caused by capillary instabilities when the laser power was ramped out.
  • Publication
    Heat treatment of SLM-LMD hybrid components
    ( 2019) ;
    Düchting, Jan
    ;
    Petrat, Torsten
    ;
    Graf, Benjamin
    ;
    Additive manufacturing is no longer just used for the production of prototypes but already found its way into the industrial production. However, the fabrication of massive metallic parts with high geometrical complexity is still too time-consuming to be economically viable. The combination of the powder bed-based selective laser melting process (SLM), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the process duration. For the industrial application of the SLM-LMD hybrid process chain it is necessary to investigate the interaction of the processes and its effect on the material properties to guarantee part quality and prevent component failure. Therefore, hybrid components are manufactured and examined before and after the heat treatment regarding the microstructure and the hardness in the SLM-LMD transition zone. The experiments are conducted using the nickel-based alloy Inconel 718.
  • Publication
    Numerische Prozesssimulation zur Auslegung des Druckfließläppens am Beispiel additiv gefertigter Bauteile
    (Fraunhofer Verlag, 2018)
    Für die Feinbearbeitung von Bauteilen mit komplexer Geometrie, insbesondere in innenliegenden Bereichen, mit höheren Ansprüchen an die Oberflächengüte hat sich das Druckfließläppen in der industriellen Anwendung etabliert. Mit dem Verfahren lassen sich zudem Grate entfernen und Kanten definiert konturieren. Für den abrasiven Vorgang sorgen in ein polymeres Basismedium eingebettete Schleifkörner. In der vorliegenden Arbeit wird ein rheologisches Modell zur Beschreibung der viskoelastischen Eigenschaften der abrasiven Medien entwickelt und in konventionelle Simulationssoftware implementiert. Der Abgleich zwischen Simulations- und Arbeitsergebnissen erfolgt am Beispiel additiv gefertigter Bauteile aus verschiedenen Werkstoffen. In diesem Zusammenhang wird auch das Potenzial für das Druckfließläppen laserstrahlgeschmolzener Bauteile aufgezeigt. Als Ergebnis liegt ein Simulationstool zur Prognose der Bearbeitungsergebnisse vor, welches sich auf beliebige Anwendungsszenarien übertragen lässt. Auf diese Weise wird zukünftig der Versuchsaufwand zur Prozessauslegung und -optimierung signifikant reduziert.
  • Publication
    Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry
    ( 2018) ;
    Marko, Angelina
    ;
    Graf, Benjamin
    ;
    With the recent rise in the demand for additive manufacturing (AM), the need for reliable simulation tools to support experimental efforts grows steadily. Computational welding mechanics approaches can simulate the AM processes but are generally not validated for AM-specific effects originating from multiple heating and cooling cycles. To increase confidence in the outcomes and to use numerical simulation reliably, the result quality needs to be validated against experiments for in-situ and post process cases. In this article, a validation is demonstrated for a structural thermomechanical simulation model on an arbitrarily curved Directed Energy Deposition (DED) part: at first, the validity of the heat input is ensured and subsequently, the model's predictive quality for in-situ deformation and the bulging behaviour is investigated. For the in-situ deformations, 3D-Digital Image Correlation measurements are conducted that quantify periodic expansion and shrinkage as they occur. The results show a strong dependency of the local stiffness of the surrounding geometry. The numerical simulation model is set up in accordance with the experiment and can reproduce the measured 3 dimensional in-situ displacements. Furthermore, the deformations due to removal from the substrate are quantified via 3D scanning, exhibiting considerable distortions due to stress relaxation. Finally, the prediction of the deformed shape is discussed in regards to bulging simulation: to improve the accuracy of the calculated final shape, a novel extension of the model relying on the modified stiffness of inactive upper layers is proposed and the experimentally observed bulging could be reproduced in the finite element model.