Now showing 1 - 10 of 150
  • Publication
    Characterization and application of assistance systems in digital engineering
    ( 2021)
    Stark, R.
    ;
    Brandenburg, E.
    ;
    Lindow, K.
    A broad range of assistance systems can be found in manufacturing practice as well as in the corresponding literature. Similarly, it can be observed that there is a growing need for and an increasing supply of assistance systems of all kinds. However, for digital manufacturing, the assistance systems are not clearly characterized. The diversity in application areas and possible uses varies and there are no possibilities for comparison. This paper addresses the topic of assistance systems and examines the various basic elements of engineering activities in terms of possible types of assistance systems based on research in manufacturing industry. Crucial aspects of assistance capabilities for engineering are elaborated and possible digital approaches are validated based on investigations in the field of aircraft engine design and assembly.
  • Publication
    Knowledge transfer and engineering methods for smart-circular product service systems
    ( 2021)
    Halstenberg, F.
    ;
    Dönmez, J.
    ;
    Mennenga, M.
    ;
    Herrmann, C.
    ;
    Stark, R.
    Smart Product Service Systems (Smart PSS) have the potential to contribute to a Circular Economy (CE), but in the design of these systems engineering teams often lack information and knowledge on CE strategies and processes. Against this background, the authors propose a knowledge transfer system for the design of Smart-circular PSS. The system can be used in the concept phase of the Smart PSS development process and delivers information on CE strategies via a Smart-circular PSS Lifecycle Flowchart (SCPLF) and service archetypes. These strategies can be selected, supplemented and extended according to individual user requirements. The approach was validated using an intelligent street lighting system. This paper summarizes findings from the application and provides insights into potentials and limitations for the design of Smart-circular Smart PSS.
  • Publication
    Methodology to develop Digital Twins for energy efficient customizable IoT-Products
    ( 2021)
    Riedelsheimer, T.
    ;
    Gogineni, S.
    ;
    Stark, R.
    Products are increasingly individualized and enhanced to be able to communicate, e.g. via Industrial Internet of Things (IoT). However, the impact of products on sustainability (environmental and social) across their life is often not considered and analyzed. IoT-based or smart products, that are able to communicate, generate data, which can be used to monitor and optimize sustainability indicators. The Digital Twin (DT) is a new technological concept which focuses on product individual data collection and analysis. It provides the possibility to make use of the available data and optimize the systems individual sustainability as well as future product generations. However, the design and realization of such a DT requires new approaches and capabilities, which is an identified research gap. Therefore, this paper presents a methodology to develop DTs of physical IoT-based products, the so called DT V-Model with the aim to optimize the systems sustainability, specifically environmental aspects. It is based on the V-model for the development of smart products and is enhanced with additional roles and approaches for DT development. The methodology is described in detail. The result of a development cycle according to the DT-V-Model is a tested concept of a DT, which includes Digital Master (DM) data from the planning phase and Digital Shadow (DS) data from the production, operation and End of Life-phase. For a DT for energy efficiency, the Digital Master model consists of the information and models from the product development phase including the planned production and use phase energy consumption. The Digital Shadow consists of the actual production energy consumption and the use phase energy consumption. The methodology is applied to a use case of an IoT-based consumer product that can be customized to a certain degree by the consumer. A DT is developed to monitor and optimize the products energy efficiency in production and use. The necessary elements of the DT and the capabilities are depicted. The paper shows the feasibility of the methodology for the development of DTs, the necessary adaptions to common approaches for development and the specific characteristics of DT development for the aim of energy efficiency.
  • Publication
    Interaction between capabilities of Model Based Systems Engineering on sensor models
    ( 2021)
    Schmidt, M.M.
    ;
    Schmidt, S.
    ;
    Stark, R.
    In modern product development, models are often used for different purposes, e.g., system synthesis, trade-off analysis of system parameters or visualization and creation of design concepts. For some models, this purpose as well as the model itself might change over time. New interactions with the target system can occur and new details are added over time. Both have to be integrated immediately into the development procedure. When models are not maintained up to date and not used by different stakeholders, the benefits of the model-based approach are lessened due to the effort for generation and maintenance. The five development capabilities of MBSE, comprising Systems Environment Analytics (SEA), Systems Definition and Derivation (SDD), Systems Interaction Modeling (SIM), Systems Lifecycle Engineering (SLE) and the MBSE Capability and Maturation Matrix (CMM) address this topic on a capability level.In this article, the authors point out the interaction between these d evelopment capabilities on the example of a Pedestrian Emergency Braking System (PEBS) development in automotive industry, with a focus on sensor models. It will be shown exemplary how one development capability might influence another and how this interaction supports the development of complex systems.
  • Publication
    Enabling automated engineering's project progress measurement by using data flow models and digital twins
    ( 2021)
    Ebel, H.
    ;
    Riedelsheimer, T.
    ;
    Stark, R.
    A significant challenge of managing successful engineering projects is to know their status at any time. This paper describes a concept of automated project progress measurement based on data flow models, digital twins, and machine learning (ML) algorithms. The approach integrates information from previous projects by considering historical data using ML algorithms and current unfinished artifacts to determine the degree of completion. The information required to measure the progress of engineering activities is extracted from engineering artifacts and subsequently analyzed and interpreted according to the project's progress. Data flow models of the engineering process help understand the context of the analyzed artifacts. The use of digital twins makes it possible to connect plan data with actual data during the completion of the engineering project.
  • Publication
    SemDaServ: A Systematic Approach for Semantic Data Specification of AI-Based Smart Service Systems
    ( 2021)
    Preidel, M.
    ;
    Stark, R.
    To develop smart services to successfully operate as a component of smart service systems (SSS), they need qualitatively and quantitatively sufficient data. This is especially true when using statistical methods from the field of artificial intelligence (AI): training data quality directly determines the quality of resulting AI models. However, AI model quality is only known when AI training can take place. Additionally, the creation of not yet available data sources (e.g., sensors) takes time. Therefore, systematic specification is needed alongside SSS development. Today, there is a lack of systematic support for specifying data relevant to smart services. This gap can be closed by realizing the systematic approach SemDaServ presented in this article. The research approach is based on Blessing's Design Research Methodology (literature study, derivation of key factors, success criteria, solution functions, solution development, applicability evaluation). SemDaServ provides a three-step process and five accompanying artifacts. Using domain knowledge for data specification is critical and creates additional challenges. Therefore, the SemDaServ approach systematically captures and semantically formalizes domain knowledge in SysML-based models for information and data. The applicability evaluation in expert interviews and expert workshops has confirmed the suitability of SemDaServ for data specification in the context of SSS development. SemDaServ thus offers a systematic approach to specify the data requirements of smart services early on to aid development to continuous integration and continuous delivery scenarios.
  • Publication
    How Pedestrians Perceive Autonomous Buses: Evaluating Visual Signals
    ( 2021)
    Brandenburg, E.
    ;
    Kozachek, D.
    ;
    Konkol, K.
    ;
    Woelfel, C.
    ;
    Geiger, A.
    ;
    Stark, R.
    With the deployment of autonomous buses, sophisticated technological systems are entering our daily lives and their signals are becoming a crucial factor in human-machine interaction. The successful implementation of visual signals requires a well-researched human-centred design as a key component for the new transportation system. The autonomous vehicle we investigated in this study uses a variety of these: Icons, LED panels and text. We conducted a user study with 45 participants in a virtual reality environment in which four recurring communication scenarios between an autonomous driving bus and its potential passengers had to be correctly interpreted. For our four scenarios, efficiency and comprehension of each visual signal combination was measured to evaluate performance on different types of visual information. The results show that new visualization concepts such as LED panels lead to highly variable efficiency and comprehension, while text or icons were well ac cepted. In summary, the authors of this paper present the most efficient combinations of visual signals for four reality scenarios.
  • Publication
    Production in the loop - the interoperability of digital twins of the product and the production system
    ( 2021)
    Vogt, A.
    ;
    Schmidt, P.H.
    ;
    Mayer, S.
    ;
    Stark, R.
    The Internet of Things (IoT) era facilitates new possibilities at the interface between the lifecycle of the product and the manufacturing disciplines allowing to add value and meet growing legal requirements. This work presents use cases from the automobile industry which are analyzed in order to derive requirements for data exchange. The analysis of the use cases shows clearly that we need to focus on the instance level for this purpose. This means that both, a specific unit of the product and the production system, must be considered. As a solution approach, a communication loop is proposed bringing the Digital Twin concept in a new field of usage. The key aspect of the proposed solution is the direct intercommunication between the Digital Twins of the product being produced as a Cyber-Physical System (CPS) and the production resources as Cyber-Physical Production Systems (CPPS). This solution enables the aggregation of production-related data within the products Digital Twin and therefore promotes maximal transparency throughout engineering disciplines, phases of the product lifecycle and the whole supply chain.
  • Publication
    Concept and Architecture for Information Exchange between Digital Twins of the Product (CPS) and the Production System (CPPS)
    ( 2021)
    Vogt, A.
    ;
    Müller, R.K.
    ;
    Kampa, T.
    ;
    Stark, R.
    ;
    Großmann, D.
    The Digital Twin concept and CPS- and IIoT-based approaches are increasingly important topics concerning future Industry 4.0 architectures. They offer high potential for dynamical aspects in intelligent production planning and control as well as part traceability and documentation. Standardized information exchange is an upcoming requirement among the whole supply chain. This paper presents a concept for a Digital Twin architecture based on motor production in the automotive industry. The key aspect is an information exchange structure for Digital Twins of products and production systems that are combined using principles of Dynamic Aggregation.
  • Publication
    Systematic Literature Review of System Models for Technical System Development
    ( 2021)
    Schmidt, M.M.
    ;
    Zimmermann, T.C.
    ;
    Stark, R.
    In Model-Based Systems Engineering (MBSE) there is yet no converged terminology. The term 'system model' is used in different contexts in literature. In this study we elaborated the definitions and usages of the term 'system model', to find a common definition. We analyzed 104 publications in depth for their usage and definition as well as their meta-data e.g., the publication year and publication background to find some common patterns. While the term is gaining more interest in recent years, it is used in a broad range of contexts for both analytical and synthetic use cases. Based on this, three categories of system models have been defined and integrated into a more precise definition.