Now showing 1 - 2 of 2
  • Publication
    Build-up strategies for additive manufacturing of three dimensional Ti-6Al-4V-parts produced by laser metal deposition
    ( 2018)
    Spranger, Felix
    ;
    Graf, Benjamin
    ;
    Schuch, Michael
    ;
    Hilgenberg, Kai
    ;
    Laser metal deposition (LMD) has been applied as a coating technology for many years. Today, the technologies capacity to produce 3D depositions leads to a new field of application as additive manufacturing method. In this paper, 3D laser metal deposition of titanium alloy Ti-6Al-4 V is studied with special regard to the demands of additive manufacturing. Therefore, only the coaxial LMD powder nozzle is used to create the shielding gas atmosphere, which ensures high geometric flexibility. Furthermore, specimen with high aspect ratio and hundreds of layers are manufactured, which represent typical features in additive manufacturing. The presented study contains the following steps: First, cylindrical specimens are manufactured with a standard shell-core build-up strategy and mechanical properties as well as fracture mechanisms are determined. Based on the results, experiments are conducted to improve the build-up strategy and new tensile test specimens are built with the improved strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. As blanks, lean cylinders comprising more than 240 layers and a height of more than 120 mm are manufactured. The specimens are analyzed by X-ray inspection for material defects. Fractured surfaces are observed via scanning electron microscopy and the composition of the surfaces is determined using energy dispersive X-ray spectroscopy. The tensile test results prove mechanical properties close to ASTM F1108 specification for wrought material.
  • Publication
    Porosity of LMD manufactured parts analyzed by Archmimedes method and CT
    ( 2018)
    Marko, Angelina
    ;
    Raute, Julius
    ;
    Linaschke, Dorit
    ;
    Graf, Benjamin
    ;
    Pores in additive manufactured metal parts occur due to different reasons and affect the part quality negatively. Few investigations on the origins of porosity are available, especially for Ni-based super alloys. This paper presents a new study to examine the influence of common processing parameters on the formation of pores in parts built by laser metal deposition using Inconel 718 powder. Further, a comparison between the computed tomography (CT) and the Archimedes method was made. The investigation shows that CT is able to identify different kinds of pores and to give further information about their distribution. The identification of some pores as well as their shape can be dependent on the parameter setting of the analysis tool. Due to limited measurement resolution, CT is not able to identify correctly pores with diameters smaller than 0.1 mm, which leads to a false decrease in overall porosity. The applied Archimedes method is unable to differentiate between gas porosity and other kinds of holes like internal cracks or lack of fusion, but it delivered a proper value for overall porosity. The method was able to provide suitable data for the statistical evaluation with design of experiments, which revealed significant parameters on the formation of pores in LMD.