Now showing 1 - 10 of 25
  • Publication
    In situ microstructure analysis of Inconel 625 during laser powder bed fusion
    ( 2022)
    Schmeiser, F.
    ;
    Krohmer, E.
    ;
    Wagner, C.
    ;
    Schell, N.
    ;
    Uhlmann, E.
    ;
    Reimers, W.
    Laser powder bed fusion is an additive manufacturing process that employs highly focused laser radiation for selective melting of a metal powder bed. This process entails a complex heat flow and thermal management that results in characteristic, often highly textured microstructures, which lead to mechanical anisotropy. In this study, high-energy X-ray diffraction experiments were carried out to illuminate the formation and evolution of microstructural features during LPBF. The nickel-base alloy Inconel 625 was used for in situ experiments using a custom LPBF system designed for these investigations. The diffraction patterns yielded results regarding texture, lattice defects, recrystallization, and chemical segregation. A combination of high laser power and scanning speed results in a strong preferred crystallographic orientation, while low laser power and scanning speed showed no clear texture. The observation of a constant gauge volume revealed solid-state texture changes without remelting. They were related to in situ recrystallization processes caused by the repeated laser scanning. After recrystallization, the formation and growth of segregations were deduced from an increasing diffraction peak asymmetry and confirmed by ex situ scanning transmission electron microscopy.
  • Publication
    Mit dem Wasserabrasivstrahl in eine neue Dimension
    ( 2021)
    Reder, W.
    ;
    Uhlmann, E.
    ;
    Anders, S.
  • Publication
    Ex Situ Residual Stress Analysis of Chemical Vapor Deposited Diamond Coated Cutting Tools by Synchrotron X-Ray Diffraction in Transmission Geometry
    ( 2021)
    Hinzmann, D.
    ;
    Böttcher, K.
    ;
    Reimers, W.
    ;
    Uhlmann, E.
    When machining difficult-to-cut, nonferrous materials, chemical vapor deposited (CVD) diamond-coated cutting tools are applied. The tools' favorable mechanical property profile is based on the hardness of the coating as well as the adaptability of the substrate. Nevertheless, the reproducibility of machining results and process stability are limited by insufficient coating adhesion. The resulting cutting tool failure is based on coating delamination initiated by crack development. By assessing residual stress as an influence of coating adhesion, an analysis of CVD diamond-coated tools is performed using synchrotron X-ray diffraction in transmission geometry. Investigation of a nanocrystalline and multilayer morphology on cobalt-based tungsten carbide (WC-Co) and a silicon nitride-based ceramic (Si3N4) provides the distribution of the principal in-plane residual stress tensor component s22 depending on the coating morphology and substrate material. Contrary to microcrystalline CVD diamond, nanocrystalline layers decrease the compressive residual stress. In addition, the CVD diamond coating deposited on the Si3N4 substrate material tends to induce an overall initial tensile residual stress that leads to increased tool performance compared to WC-Co-based coated tools. Variation of the coating morphology as well as the substrate material offers the possibility to extend the current model for residual stress-dependent tool failure.
  • Publication
    Internal Stress Evolution and Subsurface Phase Transformation in Titanium Parts Manufactured by Laser Powder Bed Fusion - An In Situ X-Ray Diffraction Study
    ( 2021)
    Schmeiser, F.
    ;
    Krohmer, E.
    ;
    Schell, N.
    ;
    Uhlmann, E.
    ;
    Reimers, W.
    Laser powder bed fusion (LPBF) is a metal additive manufacturing technology, which enables the manufacturing of complex geometries for various metals and alloys. Herein, parts made from commercially pure titanium are studied using in situ synchrotron radiation diffraction experiments. Both the phase transformation and the internal stress buildup are evaluated depending on the processing parameters. For this purpose, evaluation approaches for both temperature and internal stresses from in situ diffraction patterns are presented. Four different parameter sets with varying energy inputs and laser scanning strategies are investigated. A combination of a low laser power and scanning speed leads to a more homogeneous stress distribution in the observed gauge volumes. The results show that the phase transformation is triggered during the primary melting and solidification of the powder and subsurface layers. Furthermore, the stress buildup as a function of the part height during the manufacturing process is clarified. A stress maximum is formed below the part surface, extending into deeper layers with increasing laser power. A temperature evaluation approach for absolute internal stresses shows that directional stresses decrease sharply during laser impact and reach their previous magnitude again during cooling.
  • Publication
    Steuerung von Laser-induzierten periodischen Oberflächenstrukturen
    ( 2021)
    Uhlmann, E.
    ;
    Schweitzer, L.
    ;
    Schneider, P.
    ;
    Michel, A.
    ;
    Hein, C.
    Laser-induzierte periodische Oberflächenstrukturen (LIPSS) weisen ein hohes Potenzial für Anwendungen in den Bereichen der Oberflächenfunktionalisierung auf. Die Steuerung der Richtung dieser Nanostrukturen kann nur durch Änderung der Laserpolarisation erfolgen. Auf dem Markt gibt es kein System zur automatischen Änderung der LIPSS-Orientierung. Für den industriellen Einsatz ist dies vom Vorteil, um Inhomogenität im Strukturverlauf zu vermeiden. In diesem Beitrag wird eine Systemlösung vorgestellt, indem die Steuerung der Richtung von Nanotexturen ermöglicht wird.
  • Publication
    Verbundprojekt SmartStream: Intelligente Bearbeitung durch die Verwendung schaltbarer Fluide
    ( 2019)
    Schmiedel, C.
    ;
    Bierwisch, C.
    ;
    Uhlmann, E.
    ;
    Menzel, P.
    ;
    Mohseni-Mofidi, S.
    ;
    Breinlinger, T.
    ;
    Nutto, C.
    Strömungsschleifen und Hydroerosiv (HE)-Verrunden sind einzigartige Verfahren, die sich dadurch auszeichnen, dass sie funktionelle Oberflächen im Inneren eines Bauteils bearbeiten können, die sonst mechanisch nicht zugänglich sind. Jedoch unterliegen die Verfahren Begrenzungen aufgrund der Gesetzmäßigkeiten der Strömungsmechanik. Daher können die Verfahren nicht bei allen Anwendungen für eine technisch sowie wirtschaftlich sinnvolle Bearbeitung genutzt werden. Im Verbundprojekt SmartStream werden Möglichkeiten zur Überwindung bisher geltender Verfahrensgrenzen untersucht. Zur lokalen Beeinflussung der Zerspanungsleistung der auf die Oberflächen wirkenden Abrasivmedien werden diese durch ein externes magnetisches Feld schaltbar gemacht. Mit Hilfe des angelegten Magnetfeldes lassen sich zum einen strömungsmechanisch ungünstig gelegene Bereiche des Werkstücks bearbeiten und zum anderen die Zeitspanvolumina lokal gezielt steuern. Im vorliegenden Beitrag werden erreichte Entwicklungsziele am Beispiel des Strömungsschleifens vorgestellt.
  • Publication
    Erhöhung der Genauigkeit beim Fräsen mit Industrierobotern
    ( 2018)
    Uhlmann, E.
    ;
    Reinkober, S.
    ;
    Hollerbach, T.
    Aufgrund des seriellen kinematischen Aufbaus und den serienmäßig antriebsseitig verbauten Winkelmesssystemen ist die Form- und Lagegenauigkeit von Industrierobotern bei Fräsaufgaben limitiert. Diese wird maßgeblich von den auftretenden Prozesskräften F in Kombination mit den geringen nicht-linearen Steifigkeiten c der Getriebe serieller Kinematiken beeinflusst. Ein vielversprechender Ansatz die Genauigkeit kostengünstig zu erhöhen, ist die Verwendung von abtriebsseitigen Winkelmesssystemen. Für statische Prozesse ist die Nutzbarkeit bereits validiert. In diesem Beitrag wird erstmalig die Anwendbarkeit solcher Systeme bei Bahnprozessen untersucht und anhand von Bearbeitungsversuchen in Stahl validiert.
  • Publication
    3D-Vorkonturierung mittels Wasserabrasivstrahl
    ( 2018)
    Uhlmann, E.
    ;
    Männel, C.
    Die notwendige Reduzierung von Kraftstoffverbrauch und Treibhausgasemissionen sind nur zwei der Gründe für die steigenden Anforderungen an die Werkstoffeigenschaften. Nicht immer können die konventionellen Fertigungsverfahren mit den Entwicklungen neuer Werkstoffe Schritt halten. Der Einsatz der Wasserstrahltechnologie, deren Verschleiß vom Werkstoff unabhängig ist, bietet für diese Materialien ein hohes Potenzial. Der Wasserabrasivstrahl nutzt diesen Vorteil heute für vielfältige materialabtrennende Aufgaben. In diesem Beitrag werden die Vorkonturierung von dreidimensionalen Strukturen mittels Wasserabrasivstrahl sowie die Randbedingungen für eine wirtschaftliche Umsetzung vorgestellt. Ein Vergleich zwischen konventionalen Bearbeitungsverfahren und innovativer Wasserstrahlbearbeitung zeigt die Vorteile des Wasserabrasivstrahls bei der Bearbeitung von schwer zerspanbarem Titanaluminid auf.
  • Publication
    Trochoide Fräsbearbeitung mit Industrierobotern
    ( 2018)
    Uhlmann, E.
    ;
    Reinkober, S.
    ;
    Hoffmann, M.
    ;
    Käpernick, P.
    Der hohe Bedarf an einer dynamischen und kundenindividuellen Produktion rückt die Flexibilität von Produktionssystemen zunehmend in den Fokus. Industrieroboter leisten heute einen entscheidenden Beitrag zur Befriedigung dieses Bedarfes. Obwohl sie in der Handhabung bereits Stand der Technik sind, finden sie in der mechanischen Fertigung, nach wie vor nur selten Anwendung. Das Trochoidfräsen bietet ein Potenzial zur Steigerung der Zerspanleistung Pc [1, 2]. Diese hochdynamische Frässtrategie erzeugt deutlich geringere Schnittkräfte Fc als konventionelles Fräsen und steigert gleichzeitig das Zeitspanvolumen Qw [2, 3, 4].
  • Publication
    Zustandsüberwachung in der Cloud
    ( 2016)
    Uhlmann, E.
    ;
    Laghmouchi, A.
    ;
    Hohwieler, E.
    ;
    Geisert, C.
    Aufgrund der hohen Verfügbarkeitsanforderungen an Produktionsmaschinen wächst das Interesse an zustandsbasierter Instandhaltung. Der Einsatz von Zustandsüberwachungssystemen (Condition Monitoring-Systemen) zur Steigerung der Verfügbarkeit von Maschinen und zur Reduktion der Instandhaltungskosten spielt dabei eine entscheidende Rolle und hat in den letzten Jahren zugenommen. Da am Markt verfügbare und auf Industriesensoren basierende Lösungen meist anwendungsspezifisch, kostenintensiv und in der Inbetriebnahme aufwändig sind, wurde am Fraunhofer IPK ein Konzept für die Zustandsüberwachung in der Cloud entwickelt, das mithilfe von Einplatinen-Computern und MEMS-Beschleunigungssensoren (Mikro-Elektro-Mechanisches-System) als Sensorknoten eine preisgünstige und einfach zu handhabende Alternative darstellt.