Options
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK
Now showing
1 - 2 of 2
-
PublicationMechanical properties characterization of resistance spot welded DP1000 steel under uniaxial tensile tests( 2019)
;Javaheri, E. ;Pittner, A. ;Graf, B.Rethmeier, M.Resistance spot welding (RSW) is widely used in the automotive industry as the main joining method. Generally, an automotive body contains around 2000 to 5000 spot welds. Therefore, it is of decisive importance to characterize the mechanical properties of these areas for the further optimization and improvement of an automotive body structure. The present paper aims to introduce a novel method to investigate the mechanical properties and microstructure of the resistance spot weldment of DP1000 sheet steel. In this method, the microstructure of RSW of two sheets was reproduced on one sheet and on a bigger area by changing of the welding parameters, e. g. welding current, welding time, electrode force and type. Then, tensile tests in combination with digital image correlation (DIC) measurement were performed on the notched tensile specimens to determine the mechanical properties of the weld metal. The notch must be made on the welded tensile specimen to force the fracture and elongation on the weld metal, enabling the characterization of its properties. Additionally, the parameters of a nonlinear isotropic material model can be obtained and verified by the simulation of the tensile specimens. The parameters obtained show that the strength of DP1000 steel and the velocity of dislocations for reaching the maximum value of strain hardening, are significantly increased after RSW. The effect of sample geometry and microstructural inhomogeneity of the welded joint on the constitutive property of the weld metal are presented and discussed. -
PublicationDependency of martensite start temperature on prior austenite grain size and its influence on welding-induced residual stresses( 2013)
;Heinze, C. ;Pittner, A. ;Rethmeier, M.Babu, S.S.Austenite grain growth during welding is a critical factor for controlling weld microstructure in addition to nominal composition and thermal cycles. Recently, experimental data suggesting a decrease in martensite start temperature with a decrease in prior austenite grain size has been published. However, the actual sensitivity of this phenomenon on residual stresses evolution in the heat-affected zone has not been investigated, yet. Therefore, a numerical model was modified to consider this phenomenon. Numerical simulations were performed for welding of a low-alloy structural steel with minimum yield strength of 355 MPa (S355J2+N) and a heat-resistant steel P91 or 9Cr-1Mo, respectively. The results clarify the influence of prior austenite grain size on the residual stress development and show the importance martensite transformation temperatures and final martensite fraction. Consequently, the residual stress evolution of P91, which completely transforms to martensite while cooling, based on the enhanced model leads to maximum stress differences of 200 MPa in the heat-affected zone.