Now showing 1 - 2 of 2
  • Publication
    A study of the magnetohydrodynamic effect on keyhole dynamics and defect mitigation in laser beam welding
    ( 2022)
    Meng, X.
    ;
    Bachmann, M.
    ;
    Artinov, A.
    ;
    In this paper, the highly transient keyhole dynamics, e.g., laser absorption, keyhole geometry, and fluctuation, etc., under a magnetic field are investigated using an experimental approach and multi-physical modeling. The model provides accurate predictions to the variation of penetration depth and weld pool profiles caused by the MHD effect, which is validated by the measurements of optical micrographs and in-situ metal/glass observation. The micro-X-ray computed tomography shows a remarkable reduction of keyhole-induced porosity with the magnetic field. The correlation between the porosity mitigation and the weld pool dynamics influenced by the magnetic field is built comprehensively. It is found that the magnetic field gives a direct impact on the laser energy absorption at the keyhole front wall by changing the protrusion movement. The porosity mitigation comes from multiple physical aspects, including keyhole stabilization, widening of the bubble floating channel, and the electromagnetic expulsive force. Their contributions vary according to the bubble size. The findings provide a deeper insight into the relationship between electromagnetic parameters, keyhole dynamics, and suppression of keyhole-relevant defects.
  • Publication
    Laser beam welding of additive manufactured components: Applicability of existing valuation regulations
    ( 2022)
    Jokisch, T.
    ;
    ;
    Marko, Angelina
    ;
    Üstündağ, Ömer
    ;
    Gumenyuk, A.
    ;
    With additive manufacturing in the powder bed, the component size is limited by the installation space. Joint welding of additively manufactured parts offers a possibility to remove this size limitation. However, due to the specific stress and microstructure state in the additively built material, it is unclear to what extent existing evaluation rules of joint welding are also suitable for welds on additive components. This is investigated using laser beam welding of additively manufactured pipe joints. The welds are evaluated by means of visual inspection, metallographic examinations as well as computed tomography. The types of defects found are comparable to conventional components. This is an indicator that existing evaluation regulations also map the possible defects occurring for weld seams on additive components.