Now showing 1 - 10 of 12
  • Publication
    Build-up strategies for laser metal deposition in additive manufacturing
    ( 2018)
    Petrat, Torsten
    ;
    Graf, Benjamin
    ;
    ;
    Laser Metal Deposition (LMD) as a technology for additive manufacturing allows the production of large components outside of closed working chambers. Industrial applications require a stable process as well as a constant deposition of the filler material in order to ensure uniform volume growth and reproducible mechanical properties. This paper deals with the influence of travel path strategies on temperature profile and material deposition. Meandering and spiral hatching strategies are used in the center as well as in the edge of a specimen. The temperature is measured with thermocouples attatched to the backside of the specimen. The tests are carried out on the materials S235JR and 316L. The results show a strong dependence of the maximum temperatures on the travel path strategy and the welding position on the component.
  • Publication
    3D laser metal deposition: Process steps for additive manufacturing
    ( 2018)
    Graf, Benjamin
    ;
    Marko, Angelina
    ;
    Petrat, Torsten
    ;
    ;
    Laser metal deposition (LMD) is an established technology for two-dimensional surface coatings. It offers high deposition rates, high material flexibility, and the possibility to deposit material on existing components. Due to these features, LMD has been increasingly applied for additive manufacturing of 3D structures in recent years. Compared to previous coating applications, additive manufacturing of 3D structures leads to new challenges regarding LMD process knowledge. In this paper, the process steps for LMD as additive manufacturing technology are described. The experiments are conducted using titanium alloy Ti-6Al-4V and Inconel 718. Only the LMD nozzle is used to create a shielding gas atmosphere. This ensures the high geometric flexibility needed for additive manufacturing, although issues with the restricted size and quality of the shielding gas atmosphere arise. In the first step, the influence of process parameters on the geometric dimensions of single weld beads is analyzed based on design of experiments. In the second step, a 3D build-up strategy for cylindrical specimen with high dimensional accuracy is described. Process parameters, travel paths, and cooling periods between layers are adjusted. Tensile tests show that mechanical properties in the as-deposited condition are close to wrought material. As practical example, the fir-tree root profile of a turbine blade is manufactured. The feasibility of LMD as additive technology is evaluated based on this component.
  • Publication
    Build-up strategies for temperature control using laser metal deposition for additive manufacturing
    ( 2018)
    Petrat, Torsten
    ;
    Winterkorn, René
    ;
    Graf, Benjamin
    ;
    ;
    The track geometry created with laser metal deposition (LMD) is influenced by various parameters. In this case, the laser power has an influence on the width of the track because of an increasing energy input. A larger melt pool is caused by a rising temperature. In the case of a longer welding process, there is also a rise in temperature, resulting in a change of the track geometry. This paper deals with the temperature profiles of different zigzag strategies and spiral strategies for additive manufacturing. A two-color pyrometer is used for temperature measurement on the component surface near the melt pool. Thermocouples measure the temperatures in deeper regions of a component. The welds are located in the center and in the edge area on a test part to investigate the temperature evolution under different boundary conditions. The experiments are carried out on substrates made from mild steel 1.0038 and with the filler material 316L. The investigations show an influence on the temperature evolution by the travel path strategy as well as the position on the part. This shows the necessity for the development and selection of build-up strategies for different part geometries in additive manufacturing by LMD.
  • Publication
    3D laser metal deposition in an additive manufacturing process chain
    ( 2017)
    Graf, Benjamin
    ;
    ;
    Laser metal deposition (LMD) is an established technology for two-dimensional surface coatings. It offers high deposition rates, high material flexibility and the possibility to deposit material on existing components. Due to these features, LMD has been increasingly applied for additive manufacturing of 3D structures in recent years. Compared to previous coating applications, additive manufacturing of 3D structures leads to new challenges regarding LMD process knowledge. In this paper, the process chain for LMD as additive manufacturing technology is described. The experiments are conducted using titanium alloy Ti-6Al-4V and Inconel 718. Only the LMD nozzle is used to create a shielding gas atmosphere. This ensures high geometric flexibility, although issues with the restricted size and quality of the shielding gas atmosphere arise. In the first step, the influence of process parameters on the geometric dimensions of single weld beads is analysed based on design of experiments and statistical evaluation. The results allow adjusting the weld bead dimensions for the specific component geometry. In the second step, features of a 3D build-up strategy for high dimensional accuracy are discussed. For this purpose, cylindrical specimens consisting of more than 200 layers are built. Welding of multiple layers on top of each other leads to heat accumulation. Consequently, the molten pool is increased and weld bead height and width are changed. Furthermore, cooling times are prolonged. The build-up strategy has to be adjusted to deal with these issues. Process parameters, travel paths and cooling breaks between layers are varied. Temperatures during the deposition process are measured with pyrometer and thermography. The specimens are analysed with metallurgic cross sections, x-ray and tensile test. Tensile tests show that mechanical properties in the as-deposited condition are close to wrought material. The results are used to design guidelines for a LMD build-up strategy for complex components. As reality test, parts of a gas turbine burner and a turbine blade are manufactured according to these build-up strategies. Build-up rate, net-shape and microstructure of these demonstrative components are evaluated. This paper is relevant for industrial or scientific users of LMD, who are interested in the feasibility of this technology for additive manufacturing.
  • Publication
    Strategien zur Erreichung eines konstanten Volumenaufbaus bei der additiven Fertigung mittels Laser-Pulver-Auftragschweißen
    ( 2016)
    Petrat, Torsten
    ;
    Graf, Benjamin
    ;
    ;
    Der Einsatz von Hochleistungswerkstoffen verlangt nach einer hohen Endformnähe der zu fertigenden Bauteile, um den Aufwand und somit die Kosten für Materialeinsatz und Nachbearbeitung möglichst gering zu halten. Der additive Einsatz in Form des Laser-Pulver-Auftragschweißens bietet hierfür durch den gezielten Materialauftrag ein hohes Potential. Herausforderungen bestehen in Bereichen der Vorhersagbarkeit und der Reproduzierbarkeit des Materialauftrages, sowie der Fertigungszeit. Unterschiedliche Einflüsse bei der Schichterzeugung führen dabei zu Abweichungen von der Soll-Geometrie. Die vorliegenden Untersuchungen behandeln den Einfluss von Spurgeometrie, Spurüberlappung, Verfahrweg und Aufbaureihenfolge auf die entstehende Bauteilform. Die Teilung einer Lage in Rand- und Kernbereich ermöglicht einen konturangepassten Verfahrweg und eine Erhöhung der Endformnähe innerhalb einer Ebene. Die Verwendung unterschiedlicher Spurgrößen bei der Bauteilerzeugung verdeutlicht die Möglichkeiten einer hohen Auftragsrate bei gleichzeitig hoher Formgenauigkeit. Bereits kleine Unterschiede beim Materialauftrag zwischen Kern- und Randbereichen, Start- und Endpunkten sowie in Bereichen des Richtungswechsels führen aufgrund von Fehlerfortpflanzung nach mehreren Lagen zu Abweichungen in der Aufbaurichtung. Kompensierungen mittels angepasster Baustrategien werden aufgezeigt und diskutiert. Die Nickelbasislegierung Inconel 718, die Titanlegierung Ti-6Al-4V sowie der austenitische Stahl 316L sind Bestandteil der vorliegenden Untersuchungen. Die gewonnenen Erkenntnisse verdeutlichen das Potenzial einer angepassten Aufbaustrategie zur reproduzierbaren Erzeugung von Bauteilen am Beispiel unterschiedlicher Körpergeometrien.
  • Publication
    Combined laser additive manufacturing for complex turbine blades
    Laser beam processes are increasingly used in the field of additive manufacturing. Prominent methods are either powderbed-based like Laser Metal Fusion (LMF), or utilizing a powder nozzle like Laser Metal Deposition (LMD). While LMF allows the manufacturing of complex structures, build rate, part volumes and material flexibility are limited. In contrast, LMD is able to operate with high deposition rates on existing parts, and materials can be changed easily during the process. However LMD shape complexity is limited. Utilizing their respective strengths, a combination of these two additive technologies has the potential to produce complex parts with high deposition rates and increased material flexibility. In this paper, combined manufacturing with additive technologies LMF and LMD is described. Its benefit for industry with emphasis on turbomachinery is shown. As reality test for the innovation, an industrial turbine blade is manufactured.
  • Publication
    Laser metal deposition as repair technology for a gas turbine burner made of Inconel 718
    ( 2016)
    Petrat, Torsten
    ;
    Graf, Benjamin
    ;
    ;
    Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition.
  • Publication
    Combined laser additive manufacturing with powderbed and powder nozzle for turbine parts
    ( 2016)
    Graf, Benjamin
    ;
    Schuch, Michael
    ;
    Petrat, Torsten
    ;
    ;
    Metal additive manufacturing is often based on laser beam processes like Laser Metal Fusion (LMF) or Laser Metal Deposition (LMD). The LMF process is in particular suitable for very complex geometries. However build rate, part volume and material flexibility are limited in LMF. In contrast, LMD achieves higher deposition rates, less restricted part sizes and the possibility to change the material composition during the build-up process. On the other hand, due to the lower spatial precision of the material deposition process, the complexity of geometries is limited. Therefore, combined manufacturing with both LMF and LMD has the potential to utilize the respective advantages of both technologies. In this paper, combined additive manufacturing with LMF and LMD is described for Ti-6Al-4V and Inconel 718. First, lattice structures with different wall thickness and void sizes are built with LMF. The influence of LMD material deposition on these LMF-structures is examined regarding metallurgical impact and distortion. Cross-sections, x-ray computer tomography and 3D-scanning results are shown. For the titanium alloy specimen, oxygen and Nitrogen content in the deposited material are analysed to evaluate the LMD shielding gas atmosphere. The results are used to develop guidelines for a LMD build-up strategy on LMF substrates. With these findings, a gas turbine burner is manufactured as reality test for the combined approach.
  • Publication
    Laser-Pulver-Auftragschweißen zum additiven Aufbau komplexer Formen
    ( 2015)
    Petrat, Torsten
    ;
    Graf, Benjamin
    ;
    ;
    Das Laser-Pulver-Auftragschweißen als additives Fertigungsverfahren ermöglicht einen endformnahen Aufbau von Bauteilen. Ein Zielkonflikt besteht zwischen der Forderung nach hoher Aufbaurate und hoher Endformnähe, welcher von der Schweißraupengröße wesentlich beeinflusst wird. In dieser Veröffentlichung wird das Laser-Pulver-Auftragschweißen eingesetzt, um komplexe Formen additiv aufzubauen. Am Beispiel eines Tannenbaumprofiles werden unterschiedliche Einflussfaktoren dargestellt. Dazu gehören die Raupengeometrie, die Überlappung einzelner Raupen, die Verwendung unterschiedlicher Aufbaustrategien und die Teilung des Gesamtkörpers in Teilkörper. Der Zielkonflikt wird durch die Herstellung von Probekörpern mit unterschiedlichen Steigungswinkeln an den Seitenflächen verdeutlicht. Die Ergebnisse zeigen eine verbesserte Endformnähe in Bereichen flacher Steigung beim Einsatz kleiner Schweißraupen. Im Vergleich dazu erlauben die Schweißparameter der großen Raupen eine 5-fach höhere Aufbaurate. Bei einer Raupenüberlappung kleiner und großer Raupengeometrien innerhalb einer Lage treten Anbindungsfehler auf. Strategien zur Behebung dieses Fehlers durch Anpassung der Schweißreihenfolge werden in dieser Veröffentlichung aufgezeigt. Diese Erfahrungen werden genutzt, um einen Gesamtkörper aus Teilkörpern unterschiedlicher Raupengeometrien zu fertigen.
  • Publication
    Additive process chain using selective laser melting and laser metal deposition
    ( 2015)
    Graf, Benjamin
    ;
    Schuch, Michael
    ;
    Kersting, Robert
    ;
    ;
    Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) are prominent methods in the field of additive manufacturing technology. While the powder-bed based SLM allows the manufacturing of complex structures, buildrate and part volumes are limited. In contrast, LMD is able to operate with high deposition rates on existing parts, however shape complexity is limited. Utilizing their respective strengths, a combination of these two additive technologies has the potential to produce complex parts with high deposition rates. In this paper, a process chain consisting of additive technologies SLM and LMD is described. The experiments are conducted using the alloys Ti-6Al-4V and Inconel 718. A cylindrical test specimen is produced and the microstructure along the SLM-LMD zone is described. In addition, this process chain was tested in the manufacturing of a turbine blade. The feasibility of implementing this process chain for small batch production is discussed. The results are evaluated to show advantages and limitations of the SLM-LMD process chain. This paper is relevant for industrial or scientific users of additive manufacturing technologies, who are interested in the feasibility of a SLM-LMD process chain and its potential for increased deposition rates.