Now showing 1 - 5 of 5
No Thumbnail Available
Publication

Additives Fertigungs-Duo erleichtert Sensorintegration

2021 , Uhlmann, Eckart , Polte, Julian , Neuwald, Tobias , Kersting, Robert , Brunner-Schwer, Christian

No Thumbnail Available
Publication

Flexible manufacturing with an additive process chain. Design, production and surface finish

2015 , Uhlmann, Eckart , Rethmeier, Michael , Graf, Benjamin , Kersting, Robert , Bergmann, André

No Thumbnail Available
Publication

Effects on part density for a highly productive manufacturing of WC-Co via laser powder bed fusion

2021 , Polte, Julian , Neuwald, Tobias , Gordei, Anzhelika , Kersting, Robert , Uhlmann, Eckart

The additive manufacturing of parts made from difficult-to-weld materials through the usage of preheating temperatures of up to Î0 ⤠500 °C is enabled by newest L-PBF machine tools, such as the RenAM 500Q HT from the company RENISHAW PLC, Wottun-under-Edge, UK. This work aims to delevop processing parameters for the dense and crack-free manufacturing of tungsten-carbide cobalt (WC-Co) via this off-the-shelf machine tool. Therefore the laserpower and scanning speed were varied between 80 W ⤠PL ⤠350 W and 140 mm/s ⤠vS ⤠650 mm/s respectively. Furthermore the influence of a continuous and pulsed laser mode was analysed. A focus was set on the identification of parameters that enable a highly productive manufacturing while maintaining a high part density. A parameter set for relative density rel. > 94 % and a buildup rate v = 0.59 mm3/s was developed.

No Thumbnail Available
Publication

Additive process chain using selective laser melting and laser metal deposition

2015 , Graf, Benjamin , Schuch, Michael , Kersting, Robert , Gumenyuk, Andrey , Rethmeier, Michael

Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) are prominent methods in the field of additive manufacturing technology. While the powder-bed based SLM allows the manufacturing of complex structures, buildrate and part volumes are limited. In contrast, LMD is able to operate with high deposition rates on existing parts, however shape complexity is limited. Utilizing their respective strengths, a combination of these two additive technologies has the potential to produce complex parts with high deposition rates. In this paper, a process chain consisting of additive technologies SLM and LMD is described. The experiments are conducted using the alloys Ti-6Al-4V and Inconel 718. A cylindrical test specimen is produced and the microstructure along the SLM-LMD zone is described. In addition, this process chain was tested in the manufacturing of a turbine blade. The feasibility of implementing this process chain for small batch production is discussed. The results are evaluated to show advantages and limitations of the SLM-LMD process chain. This paper is relevant for industrial or scientific users of additive manufacturing technologies, who are interested in the feasibility of a SLM-LMD process chain and its potential for increased deposition rates.

No Thumbnail Available
Publication

Sensor integration in hybrid additive manufactured parts for real-time monitoring in turbine operations

2021 , Uhlmann, Eckart , Polte, Julian , Kersting, Robert , Brunner-Schwer, Christian , Neuwald, Tobias

Real-time monitoring of operation conditions such as tempeatures and vibrations enables efficiency enhancement for maintenance tasks. In energy industry monitoring of critical components such as turbine blades is essential for the operation safety. But the effective recording of critical process data is a challenging task due to the extreme operating conditions. With a hybrid processing approach combining two additive manufacturing technologies new classes of self-monitoring components become possible allowing data acquisition directly inside the component. Using the example of a turbine blade, the hybrid process chain is described. The turbine blade blank is produced via Laser Powder Bed Fusion (L-PBF) with channels for the integration of high temperature sensors. After integration cavities were closed by Laser Directed Energy Deposition (L-DED) followed by classical milling operations for part finishing. The data acquisition is integrated in state-of-the-art product l ifecycle monitoring (PLM) software to create a digital twin. Evaluation shows that temperature could be successfully monitored at conditions of Π= 550°C.