Now showing 1 - 1 of 1
  • Publication
    Micro-texture dependent temperature distribution of CVD diamond thick film cutting tools during turning of Ti-6Al-4V
    ( 2022) ;
    Schröter, D.
    Machining titanium alloys such as Ti-6Al-4V results in a high thermomechanical load on cutting tools and consequently short tool lifes. With respect to a necessary reduction of the resulting cutting tool temperatures, ultrashort pulse (USP) laser fabricated micro-textured rake faces offer direct supply of cooling lubricant into the cutting zone and lead to a reduced heat induction. As a result, micro-textured CVD diamond thick film cutting tools are also capable of machining high-performance materials due to reduced contact temperatures. In the scope of the research, the resulting temperature distribution for micro-textured rake faces will be compared under both dry and wet process conditions. Measurements show a reduction of the resulting cutting tool temperatures of Δϑt = 27.9 % using micro-textured cutting tools compared to non-textured cutting tools. A validated simulation provides valuable information about the contact temperatures enabling a specific development of the micro-texture geometry. As a result, a reduction of the contact temperature between chip and rake face by ΔϑT = 24.7 % was possible.