Options
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK
Now showing
1 - 10 of 349
-
PublicationIn situ microstructure analysis of Inconel 625 during laser powder bed fusion( 2022)
;Schmeiser, F. ;Krohmer, E. ;Wagner, C. ;Schell, N. ;Uhlmann, E.Reimers, W.Laser powder bed fusion is an additive manufacturing process that employs highly focused laser radiation for selective melting of a metal powder bed. This process entails a complex heat flow and thermal management that results in characteristic, often highly textured microstructures, which lead to mechanical anisotropy. In this study, high-energy X-ray diffraction experiments were carried out to illuminate the formation and evolution of microstructural features during LPBF. The nickel-base alloy Inconel 625 was used for in situ experiments using a custom LPBF system designed for these investigations. The diffraction patterns yielded results regarding texture, lattice defects, recrystallization, and chemical segregation. A combination of high laser power and scanning speed results in a strong preferred crystallographic orientation, while low laser power and scanning speed showed no clear texture. The observation of a constant gauge volume revealed solid-state texture changes without remelting. They were related to in situ recrystallization processes caused by the repeated laser scanning. After recrystallization, the formation and growth of segregations were deduced from an increasing diffraction peak asymmetry and confirmed by ex situ scanning transmission electron microscopy. -
PublicationOptimizing the sharpening process of hybrid-bonded diamond grinding wheels by means of a process model( 2022)
;Uhlmann, E.Muthulingam, A.The grinding wheel topography influences the cutting performance and thus the economic efficiency of a grinding process. In contrary to conventional grinding wheels, super abrasive grinding wheels should undergo an additional sharpening process after the initial profiling process to obtain a suitable microstructure of the grinding wheel. Due to the lack of scientific knowledge, the sharpening process is mostly performed manually in industrial practice. A CNC-controlled sharpening process can not only improve the reproducibility of grinding processes but also decrease the secondary processing time and thereby increase the economic efficiency significantly. To optimize the sharpening process, experimental investigations were carried out to identify the significant sharpening parameters influencing the grinding wheel topography. The sharpening block width lSb, the grain size of the sharpening block dkSb and the area-related material removal in sharpening VâSb were identi fied as the most significant parameters. Additional experiments were performed to further quantify the influence of the significant sharpening parameters. Based on that, a process model was developed to predict the required sharpening parameters for certain target topographies. By using the process model, constant work results and improved process reliability can be obtained. -
PublicationNumerical investigation into cleanability of support structures produced by powder bed fusion technology( 2022)
;Campana, G. ;Uhlmann, E. ;Mele, M. ;Raffaelli, L. ;Bergmann, A. ;Kochan, J.Polte, J.Purpose: Support structures used in laser powder bed fusion are often difficult to clean from unsintered powder at the end of the process. This issue can be significantly reduced through a proper design of these auxiliary structures. This paper aims to investigate preliminary the airflow within differently oriented support structures and to provide design guidelines to enhance their cleanability, especially the depowdering of them. Design/methodology/approach: This study investigates the cleanability of support structures in powder bed fusion technology. Digital models of cleaning operations were designed through computer-aided engineering systems. Simulations of the airflow running into the powder entrapped within the thin walls of auxiliary supports were implemented by computational fluid dynamics. This approach was applied to a set of randomly generated geometrical configurations to determine the air turbulence intensity depending on their design. Findings: The resul ts, which are based on the assumption that a relationship exists between turbulence and powder removal effectiveness, demonstrated that the maximum cleanability is obtainable through specific relative rotations between consecutive support structures. Furthermore, it was possible to highlight the considerable influence of the auxiliary structures next to the fluid inlet. These relevant findings establish optimal design rules for the cleanability of parts manufactured by powder bed fusion processes. Originality/value: This study presents a preliminary investigation into the cleanability of support structures in laser powder bed fusion, which has not been addressed by previous literature. The results allow for a better understanding of the fluid dynamics during cleaning operations. New guidelines to enhance the cleanability of support structures are provided based on the results of simulations. -
PublicationEffects on the distortion of Inconel 718 components along a hybrid laser-based additive manufacturing process chain using laser powder bed fusion and laser metal deposition( 2021)
;Uhlmann, E. ;Düchting, J. ;Petrat, T. ;Krohmer, E. ;Graf, B.Rethmeier, M.The combination of laser powder bed fusion (LPBF), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the additive manufacturing times for large metallic parts. For the industrial application of the LPBF-LMD hybrid process chain, it is necessary to investigate the influence of the LMD process on the LPBF substrate. In addition, the build plate material also has a significant impact on the occurrence of distortion along the additive manufacturing process chain. In the literature, steel build plates are often used in laser-based additive manufacturing processes of Inconel 718, since a good metallurgical bonding can be assured whilst reducing costs in the production and restoration of the build plates. This paper examines the distortion caused by LMD material deposition and the influence of the build plate material along the hybrid additive manufacturing process chain. Twin cantilevers are manufactured by LPBF and an additional layer is subsequently deposited with LMD. The distortion is measured in the as-built condition as well as after heat treatment. The effect of different LMD hatch strategies on the distortion is determined. The experiments are conducted using the nickel-base alloy Inconel 718. The results show a significant influence of LMD path strategies on distortion, with shorter tool paths leading to less distortion. The remaining distortion after heat treatment is considerably dependent on the material of the build plate. -
PublicationFully coupled wet cylindrical turning simulation using the Finite-Pointset-Method( 2021)
;Uhlmann, E. ;Barth, E. ;Quellhorst, A. ;Seifarth, T. ;Kuhnert, J. ;Nabbout, K.Sommerfeld, M.In industrial machining operations, many turning processes are carried out under wet conditions. In contrast, most simulation tools are only suitable for dry cutting processes due to challenges of modeling fluid-structure-interactions (FSI). In this paper, a wet, fully coupled cutting simulation using the Finite-Pointset-Method (FPM) is presented and validated for industrially relevant cylindrical turning. To facilitate the required reduction of the calculation effort, different routines like adaptive numerical discretization are applied. The results indicate different cutting fluid effects like evaporation areas around the chip. -
PublicationMeasurement and Modeling of Contact Forces during Robot-guided Drag Finishing( 2021)
;Uhlmann, E.Kopp, M.Robot-guided drag finishing is a free abrasive grinding operation that is used for polishing and deburring of workpieces with complex shaped geometries. The workpiece is attached to a robot and moved through a bulk of abrasive particles. The motion of abrasive particles during contact with the workpiece is the basis of the material removal mechanisms. To investigate the motion of abrasive particles during contact, a force measurement system was used to determine contact forces. The experimental setup was replicated in a numerical simulation based on the discrete element method (DEM). Based on the comparison of experimental and simulative results the qualitative validity of the DEM model was concluded. With the presented DEM model, the characteristic particle behavior during contact with the workpiece can be modeled which allows the prediction of resulting processing marks. Consequently, the DEM model can be used to design free abrasive grinding operations without using the time and cost intensive trial and error approach. -
PublicationNumerical investigation on the process behavior of a closed-loop internal cooling system for turning operations( 2021)
;Uhlmann, E.Meier, P.The development of sustainable manufacturing processes and the associated reduction of operating materials such as cooling lubricants represent key focuses on recent production technology. Thus, a novel tool system with a closed-loop internal cooling system for turning operations is presented in this study. The system design is based on numerical investigations of the heat flow Q⋅ with consideration of the thermomechanical load of the cutting tool and flow characteristics of the cooling fluid. The process behavior of the proposed system shows a significant dependence of the flow rate V⋅ and tool thickness tT in terms of tool temperature reduction DTHT. -
PublicationModeling of the wet immersed tumbling process with the Discrete Element Method (DEM)( 2021)
;Uhlmann, E. ;Fürstenau, J.-P. ;Kuche, Y. ;Yabroudi, S. ;Polte, J.Polte, M.Immersed tumbling is an industrially established process for finishing of components made of metal, ceramic or plastic. In this process, the components are completely surrounded by a wet, abrasive medium, which allows burrs to be removed and surfaces to be polished. In order to gain specific insights into the influence and flow properties of the abrasive media used in this process, numerical approaches using the Discrete Element Method (DEM) with the Rocky DEM software are presented within these investigations. A complete process simulation could be realised by means of a digital machine tool. The immersed tumbling process with cone-shaped polymer abrasive media is implemented by use of a liquid bridge model. The results were validated by experiments with an industrially used immersed tumbling machine tool and for the first time allow sound statements about the contact conditions and interactions of the abrasive media with the workpiece. -
PublicationMit dem Wasserabrasivstrahl in eine neue Dimension( 2021)
;Reder, W. ;Uhlmann, E.Anders, S. -
PublicationAnalysis of influencing factors for the dressing process in double side face grinding( 2021)
;Uhlmann, E.Lichtschlag, L.In grinding, the design of the dressing process is an essential part of work preparation and restoration of the grinding wheel's profile and cutting ability. In contrast to most grinding processes, the choice of dressing parameters in double face grinding with planetary kinematics has so far only been experience-based. As a consequence, the dressing process causes a higher degree of tool wear than the machining of the workpieces. A focused design of the dressing process based on a scientific data could help to improve the ecological and the economic efficiency by reducing tool wear and the amount of dressing tools used. In this paper, methods for determining the wear condition and the result of the dressing process, including macro- and microscopic characteristic are presented. This includes a correlation analysis between parameters of wear characteristics and workpiece surface quality. Furthermore, technological investigations are carried out in order to systematically limit the main influencing factors on the dressing process. As a result, the parameters dresser grain size dgd, rotational speed ratio nld and the machined dresser height ∆hd are identified as significant for dressing. The knowledge about their principal influence on the dressing result could provide the basis for further research.